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ABSTRACT

We give simple linear-time algorithms for two problems in
planar graphs: max st-flow in directed graphs with unit ca-
pacities, and multiple-source shortest paths in undirected
graphs with unit lengths.

Categories and Subject Descriptors: G.2.2 [Discrete
Mathematics]: Graph Theory—Network problems; F.2.2 [Anal-
ysis of Algorithms]: Nonnumerical Algorithms—Computa-
tions on discrete structures

General Terms: Algorithms, Performance

Keywords: combinatorial optimization; planar graphs; max
flow; multiple-source shortest paths; Menger problem

1. INTRODUCTION

In this paper, we address two fundamental problems in pla-
nar graphs: directed max flow and multiple-source shortest
paths (MSSP). Via planar duality, these are closely related
problems. The best algorithms known for these problems
each take O(n logn) time for arbitrary nonnegative weights.
Through the work of Erickson [13] and that of Cabello,
Chambers, and Erickson [8, 9], it has become apparent that
these algorithms are also closely related. Since these algo-
rithms have emerged as crucial subroutines in algorithms
for other problems, researchers in fast algorithms for planar
graphs are very interested in finding faster algorithms for
these problems.

For example, Italiano, Nussbaum, Sankowski, and Wulff-
Nilsen [20] have given an O(n log log n) algorithm for max
flow in the special case of undirected planar graphs (i.e.,
symmetric capacities).

For undirected multiple-source shortest paths, we give
an Ω(n logn) time lower bound in the linear-decision-tree
model. Motivated by this result, we consider the special
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case in which the edge-weights are small integers (given in
unary). For this case, we can give a linear-time algorithm
for undirected multiple-source shortest paths.

As a consequence, we can obtain improved bounds for sev-
eral other problems under the same special case, e.g., Steiner
tree approximation [4], dynamic shortest-path distances [15,
23], and negative-cycle detection [26, 29].

We use the same technique to obtain a simple linear-time
algorithm for max flow in directed planar graphs with small
integer capacities. A linear-time time algorithm for max-
flow in unit-weight directed planar graphs was previously
given by Brandes and Wagner [6] but the algorithm and its
proof of correctness are quite complicated.

1.1 Unit-weight directed max flow in lin-
ear time

Study of max st-flow in planar graphs has a long history.
The first publication on max st-flow, that of Ford and Fulk-
erson in 1956, gave an algorithm for the special case where
s and t are on the same face (the st-planar case). Since
then there have been many papers giving faster algorithms
for various cases. At this point, the best upper bounds
known for arbitrary positive capacities are: O(n logn) for
directed planar graphs [3], O(n log log n) for undirected pla-
nar graphs [20], and O(n) for the st-planar case [18, 19].

The algorithm for undirected planar graphs uses a com-
bination of several sophisticated data structures and algo-
rithmic techniques: an O(log6 n)-division [16] based on cy-
cle separators, a sophisticated data structure [15], and the
multiple-source shortest-paths algorithm. The linear-time
algorithm for the st-planar case uses a recursive r-division [16]
with roughly O(log∗ n) levels.

For the case where every edge has unit capacity, Weihe [33]
gave a linear-time algorithm for undirected planar graphs,
and Brandes and Wagner [6] gave a linear-time algorithm for
directed planar graphs. These algorithms are rather compli-
cated, and make use of a sophisticated data structure due to
Gabow and Tarjan [17] that requires preprocessing to con-
struct tables containing solutions to all small instances. In
addition, the proofs of correctness are quite intricate and
involved.

Once a maximum st-flow is found, a minimum st-cut can
be obtained in linear time, and in most applications one
is interested in the st-cut. The original motivation for the
study of max-flow (see [32]) was a navy think-tank’s study
of interdiction of the Soviet rail network. The problem also
arises in a variety of low-level computer vision techniques,



and in fact a version of the algorithm of [3] has been imple-
mented by computer-vision researchers [31]. An ecologist is
using min-cuts in very large planar graphs to identify crit-
ical barriers to dispersal and gene-flow between subdivided
populations of threatened species, such as jaguars in South
America [T. H. Keitt, personal communication].

In this paper, we give a linear-time algorithm for max
st-flow in directed planar graphs with unit-capacity arcs.
Our algorithm is simple both to implement and analyze. It
uses no data structure more complicated than a queue for
breadth-first search, and uses no separators or divide-and-
conquer.

Vertex capacities. While traditional max flow addresses
edge-capacities, the case of vertex-capacities has also been
addressed. Rippenhausen-Lipa, Wagner, and Weihe [30]
gave a linear-time algorithm for max st-flow in undirected
planar graphs with unit vertex-capacities Kaplan and Nuss-
baum [21] gave a linear-time reduction from st-flow in di-
rected planar graphs with vertex capacities to st-flow in di-
rected planar graphs with edge capacities. Use of this reduc-
tion together with the linear-time algorithm of Brandes and
Wagner [6] yields a linear-time algorithm for max st-flow in
directed planar graphs with unit vertex capacities. Our al-
gorithm can be substituted for that of Brandes and Wagner
to get a simpler algorithm for this problem.

1.2 Unit-weight multiple-source short-
est paths in linear time

The problem multiple-source shortest paths in planar graphs
(MSSP) is informally as follows: given a planar embedded
graph, find a representation of shortest-path trees rooted at
each of the vertices on the boundary of the infinite face. In
Section 4, we give more details on the representation; the
basic idea is to list the changes to the shortest-path tree as
the root goes from one vertex to another in order around the
boundary of the infinite face. Klein [23] first described the
problem, showed that the representation had size O(n), gave
an O(n logn)-time algorithm to find this representation, and
showed that the representation facilitates finding distances
from these roots to other specified vertices in O(logn) time
per distance.

There has been much subsequent work. Cabello, Cham-
bers, and Erickson [8, 9] described a simpler O(n logn) al-
gorithm and generalized it to graphs embedded on higher-
genus surfaces. Fast MSSP plays an essential role in a vari-
ety of recent fast algorithms for planar and bounded-genus
graphs [5, 7, 11, 22, 26, 10, 20, 27, 29, 28]. Other algorithms,
including a series of fast approximation schemes, use vari-
ants of MSSP [1, 2, 4, 12, 14, 24, 25, 34].

Due to the many uses of MSSP, there is intense interest
within the field of fast planar-graph algorithms in obtaining
an algorithm for the whose running time is o(n logn). We
show that, in a model in which the edge-lengths can only be
added and compared, there is no such algorithm: the MSSP
problem requires Ω(n logn) time.

On the other hand, we show that, for planar graphs with
undirected unit-length edges, there is a linear-time algo-
rithm to find the representation of all the shortest-path
trees. In fact, our algorithm can handle directed graphs
where arcs have nonnegative integer lengths and each arc
has a reverse arc. For a graph whose arc lengths sum to L,
the running time of our algorithm is O(n+ L).

In many published uses of the MSSP algorithm, the algo-
rithm is applied to a n-vertex planar graph whose infinite
face has O(

√
n) vertices, and the goal is to find all the dis-

tances between vertices on the infinite face. The complete
graph between these vertices, with edge-lengths defined to
be the distances, is called the dense distance graph [15]. As
pointed out in [23], since the algorithm requires O(logn)
per distance, this can be done in O(n logn) time. In this
paper, we show that our MSSP algorithm can be extended
to compute all of these distances in linear time.

Note that our lower bound for MSSP does not apply to
this more specific problem, finding the distance between all
vertices on the infinite face.

1.3 O(nα(n) log n) algorithm for shortest
paths in planar graphs with small
positive and negative lengths

Consider the problem of computing single-source shortest
paths in a directed planar graph with positive and negative
lengths. For this problem, Klein, Mozes, and Weimann gave
an O(n log2 n) algorithm [26], and Mozes and Wulff-Nilsen
gave an improvement to O(n log2 n/log log n) time [29]. The
bottleneck is computing the dense distance graph.

For the case where the lengths are (positive and negative)
integers of bounded magnitude, the O(n log2 n) algorithm
becomes an O(nα(n) logn) algorithm when using our linear-
time algorithm for computing the dense distance graph. For
example, when the lengths are in {+1, −1, 0}, this gives an
O(nα(n) logn) algorithm to find a negative-length cycle.

1.4 Linear-time approximation scheme
for unit-weight Steiner tree

Borradaile, Klein, and Mathieu [4] described an O(n logn)
approximation scheme for Steiner tree in undirected planar
graphs. The theoretical bottleneck in this approximation
scheme is a construction called strips, from [24]. This con-
struction is an adaptation of the MSSP algorithm. For pla-
nar Steiner-tree instances with undirected unit-length edges,
we can carry out the construction in linear time and conse-
quently obtain a linear-time approximation scheme for such
instances.

2. PRELIMINARIES

2.1 Darts
Fix a directed graph G = (V,E). Each arc e corresponds to
two darts, one co-oriented with e (same head and tail) and
one oppositely oriented (head of one is tail of the other).
The head and tail of a dart d are written headG(d) and
tailG(d). (The subscript can be omitted when the choice of
graph is clear.) The function rev(·) is the involution on the
dart-set that maps each dart to the oppositely directed dart
corresponding to the same arc. A dart vector is a vector
assigning a number to each dart. In this paper, we restrict
our attention to integer-valued dart vectors.

Darts are useful in discussing both network flow and pla-
nar embeddings.

2.2 Max flow
A flow assignment is a dart vector Φ satisfying antisym-
metry, i.e., Φ[rev(d)] = −Φ[d] for each dart d. A flow as-
signment Φ satisfies conservation at a vertex v if the sum



∑
d Φ[d] is zero, where the sum is over all darts d with head

v. An st-flow is a flow assignment that satisfies conservation
at every vertex except s and t. The value of an st flow is the
sum

∑
d Φ[d] where the sum is over all darts d with head t.

A dart vector c can be interpreted as an assignment of
capacities to darts. A flow assignment Φ is feasible with
respect to a capacity assignment c if Φ[d] ≤ c[d] for every
dart d. Max st-flow is the problem of finding a feasible st-
flow of maximum value.

Note that c can assign different capacities to the two darts
corresponding to a single edge. In traditional max-flow, the
capacities are all nonnegative. The undirected max st-flow
problem corresponds to having symmetric capacities, i.e.,
c[d] = c[rev(d)] for every dart d. Typically, the directed max
st-flow problem corresponds to the case where, for each edge
e, the oppositely directed dart has capacity zero.

Many algorithms for max flow use the notion of residual
capacities. Given a capacity vector c and a flow vector Φ,
the residual capacity vector is c−Φ. The residual capacity
of a dart d is then c[d]−Φ[d]. A dart is residual if its residual
capacity is positive.

2.3 Shortest paths

A dart vector c can also be interpreted as an assignment of
lengths to darts in defining an instance of shortest paths.
Again, the case of shortest paths in undirected graphs cor-
responds to the symmetric case: c[d] = c[rev(d)]. In tradi-
tional directed shortest-path problems, for each edge e, the
oppositely directed dart has infinite length. The shortest-
path algorithms introduced in this paper cannot cope with
infinite lengths, so they cannot handle traditional directed
shortest-path problems. However, the algorithms can handle
asymmetric length assignments; the running time depends
on the sum L =

∑
d c[d] of the lengths of all darts.

Our algorithm for max-flow computes shortest paths in
the dual with respect to asymmetric length assignments.
Note that whenever we refer to a shortest path, we mean
a path of darts and the possibly asymmetric length assign-
ment is used to measure the length of the path.

2.4 Graph embeddings

A planar embedded graph is a graph drawn on the plane
or the sphere such that no edges cross. The faces are the
connected components of the set of points not in the image
of the embedding. Such geometric embeddings are helpful
for intuition but, for the purposes of formal proofs and of
implementation, combinatorial embeddings are more useful.
A combinatorial embedding of a graph is a permutation π
of the graph’s darts with the following property: the orbits
are the sets {{darts with head v} : v ∈ V }. That is, each
of the permutation cycles comprising π is a permutation
cycle on the darts with a common head. A drawing can
be obtained from a combinatorial embedding by arranging
the darts about a vertex v in counterclockwise or clockwise
order according to the corresponding permutation cycle. In
the following figure, for example,
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the permutation cycle associated with the top-left vertex is
(d− e− c+), and the one associated with the bottom-right
vertex is (b− e+ a+).

For a combinatorially embedded graph, the faces are the
permutation cycles comprising rev◦π, where ◦ denotes func-
tional composition. A combinatorially embedded graph is
planar embedded if

#vertices−#edges + #faces = 2#components.

Let G be an embedded graph, and let T be a spanning
tree of G. An edge e of G that is not in T forms a simple
cycle C with T . For each dart d of e, there is an orientation
of C consistent with d. We say d is right-to-left with respect
to T if the orientation is counterclockwise.

2.5 Crossings

Let a P b and c Q d be two paths that are identical except
for their first and last darts, which differ. Let c′ be the suc-
cessor of c in Q and let d′ be the predecessor of d in Q. We
say Q forms a crossing configuration with P

a

b

c

d

c’

d’

if the permutation cycle at head(c) induces the cycle (c c′ rev(a))
and the permutation cycle at tail(d) induces the cycle (rev(d′) b d),
or the analogous statement with P and Q interchanged.

We say a walk P crosses a walk Q if a subwalk of P and
a subwalk of Q form a crossing configuration.

2.6 Dual

For a geometric embedding of a connected planar graph, the
dual is another embedded planar graph. The vertices of the
dual are the faces.

Corresponding to each edge e of the primal (the original
graph), there is an edge of the dual; it crosses the embedding



of e at an angle. For notational convenience, we identify the
edge of the dual with the corresponding edge of the primal.

Alternatively, given a combinatorial embedding π of a
graph G, the dual is the embedded graph whose embed-
ding is rev ◦ π. The dual of a planar embedded graph is a
planar embedded graph.

The combinatorial definition of the dual defines the ori-
entations of edges of the dual in terms of the orientations of
edges of the primal.

For the geometric and combinatorial definitions to be con-
sistent, one must adopt a counterclockwise interpretation for
the primal and a clockwise interpretation for the dual, or vice
versa.

Both of the two algorithms we present involve maintain-
ing a shortest-path tree. In the max flow algorithm, the
shortest-path tree is a tree in the dual; in the multiple-source
shortest-path algorithm, the shortest-path tree is in the pri-
mal. In order for our theorems about shortest-path trees to
be consistent, we adopt the following convention. A dart
d in the graph containing the shortest-path tree is rotated
ninety degrees to get the same dart in the dual graph.

A classical result in planar graphs that underlies the al-
gorithms is:

Theorem 2.1 (von Staudt, 1847). Let T be a span-
ning tree of a planar embedded graph. The edges of the graph
that are not in T form a spanning tree of the dual.

3. MAX ST -FLOW

Our algorithm for max st-flow is a modification of the al-
gorithm of Borradaile and Klein [3]. Our analysis of the
algorithm builds on the elegant formulation and analysis of
Erickson [13].1 In particular, we strengthen the theorem
“each dart is inserted into T ∗ at most once” to “each dart is
(either inserted into T ∗ or replaced in T by its reverse) at
most once”.

3.1 High-level description of the algo-
rithm

Let c be the capacity vector on darts. Since the infinite face
f∞ can be chosen arbitrarily, we select it to be incident to
the sink t.

The algorithm calculates an f∞-rooted shortest-path tree
T ∗ in the dual G∗ using c as a cost function. The algo-
rithm represents T ∗ by a table pred[·] giving, for each face
f other than f∞, the parent dart in T ∗, i.e., the dart in T ∗

whose head is f . This representation of T ∗ was suggested
by Schmidt et al. [31] and by Erickson [13].

The algorithm initializes Φ to be the circulation whose po-
tential function is the function giving the distances of faces
in the dual shortest-path tree. This circulation obeys the
capacities c. The algorithm builds a spanning tree T of the
primal G using edges not represented in the dual shortest-
path tree.

While T contains an s-to-t path, the algorithm repeats the
following steps. If there is a nonresidual dart on the path,

1However, Erickson’s analysis uses a genericity assumption about
the capacities. As he points out, this assumption can be achieved
by using tiny perturbations of capacities. We cannot use such a
technique in this paper; instead we use the fact that our algorithm
always selects the leafmost nonresidual dart to be inserted into
the shortest-path tree.

the algorithm selects the first such dart d̂ and removes it

from T . The algorithm adds d̂ to T ∗, removing the dart in
T ∗ with the same head so as to preserve the property that
T is a rooted tree. The reverse of the dart removed from
T ∗ is then added to T . (Such an iteration is called a pivot.)
Once there is no nonresidual dart on the s-to-t path in T ,
the algorithm pushes one unit of flow along this path.

In the following pseudocode, we use distc(f) to denote the
f∞-to-f distance in G∗ with respect to costs c.

def MaxFlow(G, c, s, t, f∞):
1 T ∗ := f∞-rooted shortest-path tree in G∗ w.r.t. c
2 for each vertex f 6= f∞ of G∗,
3 pred[f ] := the dart in T ∗ whose head is f
4 for each dart d,
5 Φ[d] := distc(head of d in G∗)− distc(tail of d in G∗)
6 let T be the tree formed by edges not represented in T ∗

7 while t is reachable from s in T :
8 while ∃ a nonresidual dart on the s-to-t path in T ,

9 let d̂ be the first such nonresidual dart

10 let q be the head of d̂ in G∗

11 eject d̂ from T and insert rev(pred[q]) into T

12 pred[q] := d̂
13 for each dart d on the s-to-t path in T ,
14 Φ[d] := Φ[d] + 1.

It can be shown (see [3, 13]) that the algorithm maintains
the following invariants:
1: Φ[d] ≤ c[d] for each dart d.

2: Φ[d] = c[d] for every dart d in T ∗.

3: Until the current flow is maximum, Line 11 preserves
the existence of an s-to-t path in T and Line 12 preserves
the property that T ∗ is a rooted, oriented tree.

The vector c − Φ defines the residual capacities of darts.
Interpret these as costs in G∗. By Property 1, every dart
has nonnegative cost. By Property 2, every dart in T ∗ has
zero cost. By Property 3, until the flow is maximum, T ∗ is
a rooted tree; it follows that it is a shortest-path tree with
respect to c−Φ.

3.2 Noncrossing

We briefly review the concepts underlying Erickson’s analy-
sis, and then we state a theorem we need for the analysis of
our algorithm. Fix an s-to-t path Q of darts in G and let D
be a set of darts. The crossing number of D with respect to
Q is

πQ(D) =
∑
d∈P

(1 if d ∈ D, −1 if rev(d) ∈ D, 0 otherwise).

Lemma 3.1 (Erickson). Consider an iteration, and let

d̂ be the dart ejected from the primal tree T . The iteration

increases πQ(T ∗[headG∗(d̂)]) by 1.

Lemma 3.2 (Erickson). For any face f , T ∗[f ] is the
shortest f∞-to-f path with respect to c among all such paths
with crossing number πQ(T ∗[f ]).

To model shortest paths with given crossing numbers, Er-
ickson derives from G∗ an infinite planar embedded graph
Ḡ∗ as follows. Create an infinite number of copies of G∗:
. . . , G∗−2, G

∗
−1, G

∗
0, G

∗
1, G

∗
2, . . .. For every integer i and every

dart xy in P , replace the copy of xy in G∗i with a dart whose



tail is the copy of x in G∗i and whose tail is the copy of y in
G∗i+1. The reverses of darts in P are treated similarly but
go from G∗i+1 to G∗i . The costs of darts in Ḡ∗ are defined to
be the costs of the corresponding original darts in G∗.

A path in G∗ from f∞ to f with crossing number k corre-
sponds in Ḡ∗ to a path from (f∞)0 to fk, a path from (f∞)1
to fk+1, a path from (f∞)−1 to fk−1, and so on, where we
use subscripts to indicate which copy of f∞ or f we mean.

Fix a face f . For j = 0, 1, 2 . . ., let P fj denote the f∞-

to-f path in T ∗ after j iterations of the algorithm. Let P̄ fj
denote the corresponding path in Ḡ∗ from (f∞)−k to f0
where k = πQ(P fj ). Lemma 3.2 then implies the following.

Corollary 3.3. For j = 0, 1, . . ., P̄ fj is the shortest path

in Ḡ∗ from (f∞)−πQ(P
f
j )

to f0.

Our analysis is based on the following theorem.

Theorem 3.4. For every vertex f of G∗, the paths P̄ f0 , P̄
f
1 , P̄

f
2 , . . .

are mutually noncrossing.

Under Erickson’s genericity assumption, there is a unique
shortest path between every pair of vertices in Ḡ∗, so the
theorem is immediate (since a crossing would give rise to
two distinct shortest paths with the same endpoints). Since
we cannot make this assumption, we depend for the proof
on the fact that, in Line 9, the algorithm selects the first
nonresidual dart.

Proof. Assume that the theorem is not true. Let j be
the minimum integer such that, for some vertex v and some
integer i < j, the lifted path P̄ vj crosses P̄ vi . The path P vj is
obtained from P vj−1 by a pivot.

Let T ∗ be the shortest-path tree just before the pivot, and
let xy be the dart inserted into T ∗ by the pivot. Then P vj−1

is the path to v in T ∗. Write P vj−1 = Q1 Q2 where the end
of Q1 (and the start of Q2) is y. Let R be the path in T ∗ to
x after j − 1 pivots. Then P vj = R xy Q2.

x
y

Q1

Q2 R

x
y

Q1

Q2

R

Let S = P vi . By our choice of j, the lifted path S̄ cannot
cross Q̄1 or Q̄2, so it must cross R̄. Write S = S1 S2 and
R = R1 R2 where S1 and R1 end at the final crossing of S̄
and R̄.

First suppose that S̄ crosses R̄ an odd number of times.

x
y

Q1

Q2

S1

S2

R1

R2

Since S2 is a shortest path with the same crossing number

as R2 xy Q2, all of its darts have slack zero, and the cycle
R2 xy Q2 rev(S2) does not enclose the face s of G∗. At least
one of the darts of S2 is not in T ∗ (or else T ∗ contains a
cycle), so at least one these darts is a proper descendant in
T of xy. Therefore the leafmost rule does not select xy to
pivot in, which is a contradiction.

Now suppose that S̄ crosses R̄ an even number of times.
By the minimality of j, S̄ does not cross R̄1 = P̄ zj−1 where z

is the end of R1. In consequence, however, S̄ terminates in
a region bounded by parts of R̄1 and S̄ and the boundary
of the face t that excludes the end of S, which is a contra-
diction.

3.3 Fast implementation

The challenge in implementing MaxFlow in linear time is
searching the s-to-t path in T to find the first nonresidual

dart d̂. What makes this challenging is that the s-to-t path
changes in each pivot. We use a simple strategy: sequential
search with backtracking:

s
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The left diagram shows a state of the tree T at some point
in the algorithm. The “finger” points to some vertex on the
s-to-t path in T , indicating that the darts on the path from
s to that vertex are all residual. The algorithm examines
the dart whose tail is indicated by the finger. That dart is
also residual, so the algorithm advances the finger by one
dart.

The middle diagram shows the next state. Suppose the
dart whose tail is indicated by the finger is found to be
nonresidual. The algorithm sets d+ to be that dart, inserts
it into T ∗, and identifies the dart d− in T ∗ that is being
replaced by d+. The reverse of d− is inserted into T . As
shown in the right diagram, maintaining that T is directed
towards t requires that the algorithm reverse the path from
the tail of d+ to the head of d−. Finally, the algorithm
moves the finger back to the vertex where the new s-to-t
path diverged from the old s-to-t path.

On the other hand, if the finger advances all the way to t,
the algorithm has discovered that the s-to-t path is residual.
In this case, it increases the flow on every dart in this path,
and resets the finger to point to s.

The algorithm uses the following simple data structures:

• to represent the flow assignment: an array Φ[·] indexed
by darts;

• to represent the tree T : an array succ[·] mapping ver-
tices of G (other than t) to darts (succ[v] is the dart
of T whose tail is v);

• to represent the tree T ∗: an array pred[·] mapping ver-
tices of G∗ (other than f∞) to darts (pred[f ] is the
dart of T ∗ whose head in G∗ is f);



• to represent the set of those vertices on the s-to-t path
that the finger has visited: a boolean array visited[·]
indexed by vertices;

• to represent the finger: a pointer ptr to a vertex on
the s-to-t path.

We use these data structures to implement MaxFlow.
Note that Line 1 can be executed in linear time (e.g., using
a bucket queue) since the lengths are small. Lines 7-14 are
implemented as follows:

repeat
ptr := s
while ptr 6= t,

if visited[ptr] then exit
while Φ[succ[ptr]] = c[succ[ptr]],

visited[ptr] := true
d+ := succ[ptr]
d− := pred[headG∗(d+)]
# Next, reverse the path and reset some visited entries

ReverseToPtr(head(d−))
succ[head(d−)] := rev(d−)

ptr := head(succ(ptr))
v := s
while v 6= t,

Φ[succ[v]] := Φ[succ[v]] + 1
Φ[rev(succ[v])] := Φ[rev(succ[v])]− 1
visited[v] := false

which uses a subroutine ReverseToPtr to reverse darts
to restore the invariant that T is oriented towards t. This
subroutine also resets ptr to point the appropriate vertex of
the s-to-t path, and sets visited[v] to false for vertices v that
are no longer on this path.

def ReverseToPtr(v):
if v 6= ptr,

ReverseToPtr(head(succ[v]))
succ[head(succ[v])] := rev(succ[v])

if visited[v],
ptr := v
visited[v] := false

Remark: the flow values along the s-to-t path could be
increased not by 1 but by the minimum residual capacity of
the path, which must be at least 1. Up to a constant factor,
this does not decrease the worst-case running time, but it
might be an improvement in practice.

3.4 Implications of noncrossing paths
Lemma 3.5. The following statements apply to the evolv-

ing shortest path tree of both maximum flow and MSSP. Let
i1, i2, i3, i4 be times (i.e., numbers of pivots) such that either
i1 < i2 < i3 < i4 or i4 < i1 < i2 < i3. Let uv be an arbitrary
dart.

1. If dart uv is right-to-left at times i1 and i3, then it is
right-to-left at time i2 or i4.

2. If dart uv is in the shortest path tree at times i1 and
i3, then it is in the shortest path tree at time i2 or i4.

3. If dart uv is right-to-left at time i1 and in the shortest
path tree at time i3, then it is right-to-left or in the
shortest path tree at time i2.

In consequence, for each edge uv, there are four cyclically
contiguous periods, in order: dart uv is right-to-left, dart uv
is in the shortest path tree, dart vu is right-to-left, dart vu
is in the shortest path tree.

Proof. See Figure 1. For j ∈ {1, 2, 3, 4} and x ∈ {u, v},
let Pjx be (MSSP) the algorithm’s shortest path to vertex
x at time ij in G or (maximum flow) the algorithm’s lifted
shortest path to vertex x0 at time ij in Ḡ∗. Recall that, by
Theorems 3.4 and 4.7, for all j, the paths Pju and Pjv are
noncrossing, and, for all i and j, the paths Piu and Pju are
noncrossing, and the paths Piv and Pjv are noncrossing.

For claims 1 and 2, assume symmetrically that dart uv
is not enclosed by the cycle rev(P1u) P3u. For claim 3, we
prove this unconditionally by showing that the path P1u

enters vertex u between vu exclusive and P3u inclusive in
counterclockwise order. The path P1u crosses neither the
path P1v nor the path P3u. Accordingly, P1u does not cross
the cycle rev(P1v) P3v = rev(P1v) P3u uv. Since dart uv is
right-to-left at time i1, the path P1u contains a dart belong-
ing to the interior of the cycle, and the conclusion follows.

To show claim 1, assume to the contrary that dart uv is
not right-to-left at time i2. The path P2v does not contain
dart uv, as otherwise, it would cross the path P3v. It follows
that P2v crosses the path P3u, which implies the contradic-
tion that P2v crosses the path P3v.

To show claim 2, observe that the path P2v crosses neither
the path P1v = P1u uv nor the path P3v = P3u uv and thus
contains dart uv.

To show claim 3, assume to the contrary that dart uv is
not right-to-left at time i2 and that P2v does not contain
dart uv. It follows that the dart uv belongs to the exte-
rior of the cycle rev(P1v) P2v and thus that the path P2u

crosses the path P1v. The latter statement in turn implies
the contradiction that P2u crosses the path P1u.

3.5 Running time
Theorem 3.6. Let C be the total capacity of all darts.

The running time of MaxFlow is O(n+ C).

Proof. The initialization runs in time O(n + C). By
Lemma 3.5, for every dart d, there is at most one time at
which d is replaced in T by its reverse, so the total time spent
in ReverseToPtr is O(n). Excluding ReverseToPtr,
each addition to the s-to-ptr path is accomplished in time
O(1), and only ReverseToPtr removes darts from that
path. Updating the flow thus dominates the remainder of
the running time. Since flow is pushed only on right-to-left
edges, it follows again by Lemma 3.5 that the time spent
updating the residual capacities of each particular edge is on
the order of the sum of the capacities in each direction.

4. MULTIPLE-SOURCE SHORTEST
PATHS

In this section, we describe the multiple-source shortest-
paths (MSSP) problem in greater detail, and we describe
the abstract algorithm for solving it. Here is an informal
specification of MSSP:

• input: a directed planar embedded graph G with a
designated infinite face f∞, and a vector c assigning
nonnegative lengths to darts.
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Figure 1. Illustrations of Lemma 3.5. The horizontal line denotes
the boundary of the infinite face. The vertices labeled i1, i2, i3 are
the roots of the shortest path tree at those times.

• output: a representation of the shortest-path trees rooted
at the vertices on the boundary of f∞.

We make this more formal by specifying the representation.
Let d1 · · · dk be the counterclockwise cycle of darts forming
the boundary of f∞. Let T0 be the shortest-path tree rooted
at tail(d1). For i = 1, . . . , k, let Ti be the shortest-path tree
rooted at head(di). The goal of an algorithm for MSSP is
to output the changes required to transform T0 into T1, the
changes needed to transform T1 into T2, ..., and the changes
needed to transform Tk−1 into Tk.

4.1 Pivots

The basic unit of change in a rooted tree T , called a pivot,
consists of ejecting one dart d− and inserting another dart
d+ so that the result is again a rooted tree. A pivot is
specified by the pair (d−, d+) of darts.2

Transforming T from Ti−1 to Ti consists of

• a special pivot that ejects the dart whose head is head(di),
and inserts the dart rev(di), after which T is head(di)-
rooted, and

• a sequence of ordinary pivots each of which ejects a
dart d− and inserts a dart d+ with the same head.

Klein [23] shows that the number of pivots required is O(n)
and describes an O(n logn) algorithm to find them. The
algorithm was based on using a dynamic-tree data structure
to represent the dual T ∗ of T . In each step, the algorithm
used the leafmost rule to select the dart d+ to insert: among
all candidates for inserting into T , select one that in the
dual tree T ∗, rooted at the infinite face, has no descendants

2The term pivot comes from an analogy to the network-simplex
algorithm.

that are candidates. Each operation of the dynamic-tree
data structure requires O(logn) time, giving the O(n logn)
bound.

Building on this work, Cabello, Chambers, and Erick-
son [8, 9] described a simpler O(n logn) algorithm and gen-
eralized it to graphs embedded on higher-genus surfaces. In
their analysis, they assume non-degeneracy: between each
pair of vertices there is a unique shortest path. (They sug-
gest coping with degeneracy by introducing tiny random per-
turbations.)

The algorithm we present in this paper builds in turn on
their approach. We give a method for finding pivots that
does not use any sophisticated data structure.

Theorem 4.1. There is an O(n+L)-time algorithm that,
given a planar embedded graph with nonnegative integer dart
lengths that sum to L, solves the MSSP problem, computing
the pivots for all shortest-path trees rooted at the vertices on
the boundary of the infinite face.

The algorithm is obtained from that of Cabello et al. by two
modifications. First, because we cannot address degeneracy
by introducing tiny perturbations, we must re-introduce a
leafmost rule in order to cope with degeneracy. Second, a
more detailed analysis of the pivots allows us to show that,
for darts with integer lengths that are small on average, the
dynamic-tree data structure can be eliminated in favor of a
much simpler data structure.

4.2 Lower bound for real edge-lengths

The following theorem shows that every o(n logn)-time al-
gorithm for MSSP operates on lengths and distances other
than by addition and comparison. The proof technique is to
reduce sorting to MSSP.

Theorem 4.2. Every linear decision tree that computes
multiple-source shortest paths has depth Ω(n logn).

Proof. Consider the family depicted in Figure 2 of graphs
with parameter π, a permutation on {1, . . . , n}. The infinite
face has

√
n + 2 vertices. For all i, the differences between

the shortest path tree with root ui and the shortest path tree
with root ui+1 are to exchange, for all i

√
n < j ≤ (i+1)

√
n,

dart u0vπ−1(j) for dart u√nvπ−1(j). Over all possible permu-

tations, there are N =
(

n√
n,...,

√
n

)
possible outputs, so the

decision tree has depth at least logN = Ω(n logn).

4.3 Computing boundary-to-boundary
distances

Wee show that, when the boundary of the infinite face con-
sists of O(

√
n) vertices, our MSSP algorithm can be ex-

tended to compute the dense distance graph in linear time.

Theorem 4.3. There is an algorithm that, given a pla-
nar embedded graph with nonnegative integer dart lengths,
computes distances between vertices on the boundary of the
infinite face. The algorithm runs in O(n + L + k2) time
where L is the sum of all dart lengths and k is the number
of vertices on the boundary of the infinite face.

Since the output size is k2, the running time when L = O(n)
is optimal (to within a constant factor).
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Figure 2. A family of graphs with parameter π, a permutation on
{1, . . . , n}, on which every linear decision tree for MSSP has depth
Ω(n logn).

4.4 The MSSP algorithm

We give a high-level description of the MSSP algorithm. In
structure it closely resembles that of Cabello et al. The
algorithm consists of k iterations, one for each of the darts
di on the boundary of the infinite face. At the beginning
of Iteration i, the shortest-path tree T is rooted at tail(di).
Let D be the distance in the graph from the tail of di to the
head. To change the root from the tail of di to its head, the
algorithm modifies the shortest-path tree T by (a) inserting
rev(di) with a length of −D, and (b) removing the dart
whose head is the head of di. This is the special pivot. The
resulting tree is a shortest-path tree rooted at the head of
di.

Next, the algorithm gradually increases the length of rev(di)
until it reaches its original length. During this process, or-
dinary pivots are performed as necessary to maintain the
property that the tree T is a shortest-path tree with respect
to the current lengths. At the end of the process, T is a
shortest-path tree with respect to the original lengths. By
as necessary, we mean that increasing the length of rev(di)
without performing a pivot would make T not a shortest-
path tree.

Say a dart xy is active if the root-to-x path in T does
not include rev(di) but the root-to-y path does (and xy 6=
rev(di)).

We use λ to denote the (increasing) length of rev(di). De-
fine cλ to be the vector assigning lengths as a function of λ,
i.e.,

cλ(d) =

{
λ if d = rev(di)
c[d] otherwise.

For a length vector ` and for each vertex v, define disti(v, `)
to be the head(di)-to-v distance with respect to `. For each
dart d, define the slack of dart xy as

slacki(xy, `) = disti(x, `) + `[xy]− disti(y, `).

It follows that, as λ increases, the slack of a dart xy decreases
if and only if xy is active.

We use T ∗ to denote the spanning tree of the planar dual
G∗ that consists of edges not in T . The following lemma is
adapted from Cabello et al.

Lemma 4.4. Let f be the face to the right of rev(di). The
active darts are the darts in the path from f to f∞ in T ∗.

Now we give a high-level description of the MSSP algo-
rithm.

T := tail(d1)-rooted shortest-path tree for G
for i = 1, . . . , k,
1 λ := −1 times the distance from tail(di) to head(di)
2 remove the dart of T entering head(di) and insert rev(di)
3 while λ < c[rev(di)],
4 while there is an active dart d with slacki(d, cλ) = 0,
5 d+ := the leafmost such dart in the dual tree T ∗

6 remove from T the dart d− whose head is head(d+),
7 insert d+ into T
8 λ := λ+ 1

This procedure differs somewhat from that of Cabello et al.
In their algorithm, the dart di is bisected into two and the
root is the vertex in between, but this difference is not sig-
nificant. More significantly, their algorithm finds an active
dart d+ whose slack is minimum, and increases λ to make
that dart’s slack minimum, then pivots the dart in. Our al-
gorithm, taking advantage of the small weights, iteratively
increments λ by one, always pivoting in the leafmost zero-
slack dart. These differences do not affect the procedure’s
correctness.

4.5 Correctness

In this section, we briefly show that, at the end of each
iteration of the for-loop, T is a shortest-path tree.

Lemma 4.5. Assume that, at the beginning of the proce-
dure’s execution, T is a shortest-path tree with respect to c.
Then throughout the execution, T is a shortest-path tree with
respect to cλ.

Proof. The assumption implies that, after Line 2, T is a
shortest-path tree with respect to cλ, since the special pivot
increases the distance to every vertex by exactly the initial
value of λ. In each ordinary pivot, the fact that the entering
dart has slack zero shows that the resulting tree remains a
shortest-path tree.

Corollary 4.6. At the end of the procedure, T is a shortest-
path tree with respect to c.

Proof. The procedure terminates when λ = c[rev(di)]
so cλ is identical to c.

4.6 Noncrossing

The following theorem, analogous to Theorem 3.4, is the
basis for the running-time analysis. Like that theorem, this
one is trivial in the absence of degeneracy.

Theorem 4.7. Let v be any vertex. For j = 0, 1, 2, . . . ,
let P vj be the root-to-v path in the shortest-path tree T after
j pivots. The paths P v0 , P

v
1 , . . . are mutually noncrossing.



Proof. Assume the theorem is not true. Let j be the
minimum integer such that, for some vertex v and some
integer i < j, P vj crosses P vi . The path P vj is obtained from
P vj−1 by a pivot. The pivot must be ordinary since a special
pivot cannot create a crossing. Let T be the shortest-path
tree just before the pivot, and let xy be the dart inserted
into T by the pivot. Then P vj−1 is the path to v in T . Write
P vj−1 = Q1 Q2 where the end of Q1 (and start of Q2) is
y. Let R be the path in T to x after j − 1 pivots. Then
P vj = R xy Q2.

x
y

Q1

Q2 R

x
y

Q1

Q2

R

Let S = P vi . By our choice of j, S cannot cross Q1 or Q2, so
it must cross R. First suppose S crosses R an odd number
of times. Write S = S1 S2 where the start of S2 is the last
vertex of S on R.

x
y

Q1

Q2

S1

S2

R1

R2

Then S2 is a shortest path, so all of its darts have slack
zero. Write R = R1 R2 where the end of R1 is the start
of S2. At least one of the darts of S2 is not in T (or else
T contains a cycle). Therefore at least one these darts is a
proper descendant in T ∗ of xy. Therefore the leafmost rule
does not select xy to pivot in, which is a contradiction.

Now suppose S crosses R an even number of times. Write
R = R1 R2, where the end of R1 is the final crossing of S
over R. One of the previous crossings must be an internal
vertex of R1,

x
y

Q1

Q2

R

x
y

Q1

Q2

R

or else there is no way for R to reach v without crossing itself.
Therefore R1 is a contradiction to the choice of j.

4.7 Implementation of pivot-finding

The challenge in implementing the MSSP algorithm is in
finding the leafmost active dart with zero slack. The strat-
egy we use is exactly analogous to that for max st-flow. The
algorithm searches up the path in T ∗, searching for a dart
with zero slack, using a finger to keep track of which vertex
it has reached. When it finds a zero-slack dart, it performs
a pivot, reverses the orientation of darts to maintain that

T ∗ is oriented towards the root f∞, and resets the finger
to the rootmost vertex on the path such that all darts on
the path leafward of that vertex are known to have nonzero
slack. The implementation uses the following simple data
structures:

• to represent the shortest-path tree T : an array pred[·]
mapping vertices of G (other than T ’s root) to darts
(pred[f ] is the dart of T whose head in G is f)

• to represent the dual spanning tree T ∗: an array succ[·]
mapping vertices ofG∗ (other than f∞) to darts (succ[v]
is the dart of T ∗ whose tail is v);

• to represent the dart slacks: an array slack[·] mapping
darts to integers;

• to represent the set of those vertices on the s-to-t path
that the finger has visited: a boolean array visited[·]
indexed by vertices;

• to represent the finger: a pointer ptr to a vertex on the
path.

4.8 Running time

The proof of the following theorem is analogous to that of
Theorem 3.6.

Theorem 4.8. Let L be the total length of all darts. The
running time of MSSP is O(n+ L).

4.9 Implementation of distance-finding

Now we prove Theorem 4.3. Recall that, for every dart xy
and iteration i, we define

slacki(xy, `) = disti(x, `) + `[xy]− disti(y, `).

By solving for disti(y, `), we obtain the equation

disti(y, `) = disti(x, `) + `[xy]− slacki(xy, `).

To obtain distances from the root to the other k−1 vertices
on the boundary of the infinite face in time O(k), compute
the cumulative sums of `[xy] − slacki(xy, `) for darts xy in
order on the oriented boundary of the infinite face.

4.10 Necessity of leafmost pivots

Theorem 4.7 does not hold without the leafmost selection
rule. Here is an execution of MSSP where the leafmost rule
is not obeyed and the initial path into the top vertex is to
the left of the final path.

not

⇒⇒

⇐⇐

⇓

⇐
leafmost
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