Four Shortest Vertex-Disjoint Paths in Planar Graphs

Jeff Erickson
University of Illinois at Urbana-Champaign
jeffe@illinois.edu
https://orcid.org/0000-0002-5253-2282

Yipu Wang
University of Illinois at Urbana-Champaign
ywang298@illinois.edu

Abstract
Let G be an edge-weighted planar graph with $2k$ terminal vertices $s_1, t_1, \ldots, s_k, t_k$. The minimum-sum vertex-disjoint paths problem asks for a set of pairwise vertex-disjoint simple paths of minimum total length, where the ith path connects s_i to t_i. Even when all terminals lie on a single face, efficient algorithms for this problem are known only for fixed $k \leq 3$. We describe the first polynomial-time algorithm for the case of four arbitrary terminal pairs on a single face.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases shortest vertex-disjoint paths, planar graphs, four

Funding This work was partially supported by NSF grant CCF-1408763.

Acknowledgements The authors would like to thank Amir Nayyeri for helpful discussions about Zafarani’s structure lemma.

Introduction
In the vertex-disjoint paths problem, we are given a graph G along with k vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$, and we want to find k pairwise vertex-disjoint paths connecting each node s_i to the corresponding node t_i. The vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$ are called terminals.

The vertex-disjoint paths problem is a special case of multi-commodity flows with applications in VLSI design [8,20] and network routing [19,23]. This problem is NP-hard [14], even if G is undirected planar [17] or if G is directed and $k = 2$ [7]. On the other hand, it can be solved in polynomial time if G is undirected and k is bounded [15,21] or if G is directed acyclic and k is bounded [7]. Furthermore, the problem is fixed-parameter tractable with respect to the parameter k in directed planar graphs [5,22].

We focus on an optimization version of the vertex-disjoint paths problem, where the goal is to minimize the total length of the paths. In the k-min-sum problem, we are given a graph G, in which every edge e has a non-negative real length $\ell(e)$, and k pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$, and our goal is to compute vertex-disjoint paths P_1, \ldots, P_k, where each path P_i is a path from s_i to t_i, and the total length $\sum_{i=1}^k \ell(P_i)$ is as small as possible. (Here $\ell(P_i) = \sum_{e \in P_i} \ell(e)$.) This optimization problem has been previously considered in the context of network routing, where the goal is to minimize the amount of energy required to send packets [19,23].
Four Shortest Vertex-Disjoint Paths in Planar Graphs

Middendorf and Pfeiffer [17] proved that the k-min-sum problem is NP-hard when the parameter k is part of the input, even in undirected 3-regular plane graphs. However, surprisingly little is known about the complexity of the planar k-min-sum when k is fixed. In fact, no non-trivial algorithms or hardness results are known for either the 2-min-sum problem in directed planar graphs or the 5-min-sum problem in undirected planar graphs, even when all terminals are required to lie on a single face.

Polynomial-time algorithms for the planar k-min-sum problem are known for arbitrary k when all $2k$ terminals lie on a single face, in one of two patterns. In a parallel instance, the terminals appear in cyclic order $s_1, \ldots, s_k, t_k, \ldots, t_1$, and an s serial instance, the terminals appear in cyclic order $s_1, t_1, s_2, t_2, \ldots, s_k, t_k$. Even in directed planar graphs, parallel instances of k-min-sum can be solved using a straightforward reduction to minimum-cost flows [10] in $O(kn^3)$ time. A recent algorithm of Borradaile, Nayyeri, and Zafarani [2] solves any serial instance of k-min-sum in an undirected planar graph in $O(kn^5)$ time.

If we allow arbitrary patterns of terminals, fast algorithms are known for only very small values of k. Kobayashi and Sommer [16] describe two algorithms, one running in $O(n^3 \log n)$ time when $k = 2$ and all four terminals are covered by at most two faces, the other running in $O(n^4 \log n)$ time when $k = 3$ when all terminals are incident to a single face. Colin de Verdière and Schrijver [4] describe an $O(kn \log n)$-time algorithm for directed planar graphs where all sources s_i lie on one face and all targets t_i lie on another face. Finally, if $k \leq 3$, every planar instance of k-min-sum with all terminals on the same face is either serial or parallel.

Zafarani [24] proved an important structural result for the planar k-min-sum problem. Consider an undirected edge-weighted plane graph G with terminals $s_1, t_1, \ldots, s_k, t_k$ on its outer face, and suppose s_k and t_k are adjacent in cyclic order of the terminals. (The other $2k - 2$ terminals can appear in any order.) Let Q_1, Q_2, \ldots, Q_k be the shortest vertex-disjoint paths in G connecting all k terminal pairs, and let $P_1, P_2, \ldots, P_{k-1}$ be the shortest vertex-disjoint paths in G connecting every pair except s_k, t_k, where the subscript on each path indicates which terminals it connects. Zafarani’s Structure Theorem states that if two paths P_i and Q_j cross, then $i = j$.

Finally, Datta et al. [6] recently proved that the k-min-sum problem in unweighted plane graphs, with all terminals on the outer face, can be solved in polynomial time for arbitrary fixed k and arbitrary terminal patterns. Specifically, they described a randomized algorithm that runs in $O(4^k n^{\omega+1})$ expected time, and a deterministic algorithm that runs in $O(4^k n^\omega)$ time where $O(n^\omega)$ is the time for fast matrix multiplication. Their algorithms rely on subtle inclusion-exclusion techniques that appear difficult to generalize to weighted graphs.

We describe the first polynomial-time algorithm to solve the 4-min-sum problem in undirected edge-weighted planar graphs with all eight terminals on a common face. If the given instance is parallel or serial, it can be solved using existing algorithms; otherwise, the terminals can be labeled $s_1, s_3, s_1, t_1, s_2, t_2, t_3, t_4$ in cyclic order around their common face. To solve these instances, our algorithm first computes a solution to the 3-min-sum problem for the terminal pairs s_1t_1, s_2t_2, s_4t_4, using an existing algorithm [2, 16]. We identify a small set of key anchor vertices where the 3-min-sum solution intersects the 4-min-sum solution we want to compute. For each possible choice of anchor vertices, our algorithm connects these vertices to the terminals by solving parallel min-sum problems in three carefully constructed subgraphs of G. Overall, our algorithm runs in $O(n^6)$ time. Our characterization of the interaction between the optimal 3-min-sum and 4-min-sum solutions, which extends Zafarani’s Structure Theorem [24], is the main technical contribution of the paper.
2 Preliminaries

For any plane graph G, we write ∂G to denote the boundary of the outer face of G; we also informally call ∂G the boundary of G. Without loss of generality, we assume that ∂G is a simple cycle.

Our algorithms search for pairwise vertex-disjoint walks with minimum total length that connect corresponding terminals, rather than explicitly seeking simple paths. Because all edge lengths are non-negative, the shortest set of walks will of course consist of simple paths. The length of a walk w in an edge-weighted graph, which we denote $\ell(w)$, is the sum of the lengths of its edges, with appropriate multiplicity of w is not a simple path. The total length of any set of walks W, which we denote $\ell(W) = \sum_{w \in W} \ell(w)$, is just the sum of their lengths. Two walks meet or touch if they have at least one vertex in common.

For any path P and any vertices u and v on that path, we write $P[u, v]$ to denote the subpath of P from u to v. Similarly, let $P[u, v]$ denote the subpath of P from u to the predecessor of v, let $P(u, v]$ denote the subpath of P from the successor of u to v, and let $P[u, v)$ denote the subpath of P from the successor of u to the predecessor of v; these subpaths could be empty. The reversal of any path P is denoted $\text{rev}(P)$. The concatenation of two paths P and P' is denoted $P \circ P'$.

Our 4-min-sum algorithm relies on a black-box subroutine to solve parallel instances of 2-min-sum and 3-min-sum. Van der Holst and de Pina [10] observed that any parallel instance of k-min-sum can be solved in polynomial time by reduction to minimum-cost flow problem. In fact, these instances can reduced in $O(n)$ time to a planar instance of minimum-cost flow, by replacing each vertex with a clockwise directed unit-capacity cycle, as described by Colin de Verdiére and Schrijver [4] and Kaplan and Nussbaum [13]. The resulting minimum-cost flow problem can then be solved $O(kn)$ time by performing k iterations of the classical successive shortest path algorithm [3, 11, 12], using the $O(n)$-time shortest-path algorithm of Henzinger et al. [9] at each iteration.

To simplify our presentation, we assume that our given instance of 4-min-sum and every instance of 2-min-sum and 3-min-sum considered by our algorithm has a unique solution. If necessary, these uniqueness assumptions can be enforced with high probability using the isolation lemma of Mulmuley, Vazirani, and Vazirani [18]. We omit further details from this version of the paper.

3 Structure

Let G be an undirected plane graph with non-negative edge lengths, and let $s_4, s_3, s_1, t_1, s_2, t_2, t_3, t_4$ be eight distinct vertices in clockwise order around the outer face, as shown in Figure 1. Let $Q = \{Q_1, \ldots, Q_4\}$ denote the unique optimal solution to this 4-min-sum instance, where each path Q_i connects s_i to t_i, and let $P = \{P_1, P_2, P_4\}$ denote the unique optimal solution to the induced 3-min-sum problem that omits the demand pair s_3t_3, where again each path P_i connects s_i to t_i. We can compute P in $O(n^4 \log n)$ time using the algorithm of Kobayashi and Sommer [16], or in $O(n^5)$ time using the more general algorithm of Borradaile et al. [2].

We assume without loss of generality that the paths in P and Q do not use edges on the outer face. If necessary to enforce this assumption, we can connect the terminals using an outer cycle of eight infinite-weight edges.

The paths in P divide G into four regions, as shown in Figure 1(a). Let X be the unique region adjacent to all the paths in P. For each index $i \neq 3$, let C_i denote the subpath of ∂G
from s_i to t_i that shares no edges with X, let R_i denote the closed region bounded by P_i and C_i, and let R_i^o denote the half-open region $R_i \setminus P_i$.

3.1 Envelopes

Fix a reference point z on the boundary path C_d. Let π be some path from s_i to t_i, for some index i. We say that a point $x \not\in \pi$ lies below π if x lies on the same side of π as the point z, and above π otherwise.

Now fix two indices $i \leq j$. Let π be an arbitrary path from s_i to t_i, and let ρ be an arbitrary path from s_j to t_j; these two paths may intersect arbitrarily. If $i = j$, let D be the path in ∂G from s_i to t_i that lies above π and E be the path in ∂G from s_j to t_j that lies below ρ. Otherwise, let D and E be the unique disjoint paths in ∂G from s_i to t_i and from s_j to t_j, respectively. The paths π and ρ divide the interior of G into connected regions. Let U be the unique region with the entire path D on its boundary, and let L be the unique region with the entire path E on its boundary. Finally, let $U(\pi, \rho) = \partial U \setminus D$ and $L(\pi, \rho) = \partial L \setminus E$.

Intuitively, for most choices of i and j, $U(\pi, \rho)$ is the “upper envelope” of π and ρ, and $L(\pi, \rho)$ is the “lower envelope” of π and ρ. However, when $i = 1$ and $j = 2$, the path $U(\pi, \rho)$ is better thought of as the “left envelope” (because it lies below ρ), and $L(\pi, \rho)$ is better thought of as the “right envelope” (because it lies above ρ); fortunately, this exception arises only in the proof of Lemma 3.3.

Lemma 3.1. For any terminal-to-terminal paths π and ρ, we have $\ell(U(\pi, \rho)) + \ell(L(\pi, \rho)) \leq \ell(\pi) + \ell(\rho)$.

Proof. Each component of $U(\pi, \rho) \setminus \pi$ is an open subpath of ρ that lies entirely above π and therefore is disjoint from $L(\pi, \rho)$. It follows that every edge in $U(\pi, \rho) \cap L(\pi, \rho)$ is an edge of π. Similarly, every edge in $U(\pi, \rho) \cap L(\pi, \rho)$ is an edge of ρ.

3.2 How \mathcal{P} intersects \mathcal{Q}

We begin by proving several structural properties of the 4-min-sum solution \mathcal{Q} that will help us compute it quickly once we know the 3-min-sum solution \mathcal{P}. Our structural observations are summarized in the following theorem:

Theorem 3.2. If Q_i crosses P_j, then either $i = j = 1$, or $i = j = 2$, or $i = 3$ and $j = 4$. Moreover, either $Q_1 \subset R_1$ or $Q_2 \subset R_2$ or both, and $Q_4 \subset R_4$.

Figure 1(b) shows two typical structures for \mathcal{Q} that are consistent with this theorem. We prove Theorem 3.2 using a series of exchange arguments, with the following high-level
structure. Suppose some pair of paths P_i and Q_j cross, in violation of Theorem 3.2. By
considering upper and lower envelopes of various paths in \mathcal{P} and \mathcal{Q}, we construct new sets \mathcal{P}'
and \mathcal{Q}' of vertex-disjoint paths. Then we argue, usually via Lemma 3.1, that $\ell(\mathcal{P}) + \ell(\mathcal{Q}) \geq$
$\ell(\mathcal{P}') + \ell(\mathcal{Q}')$, contradicting the unique optimality of \mathcal{P} and \mathcal{Q}.

Lemma 3.3. Q_1 does not cross P_2, and Q_2 does not cross P_1.

Proof. Suppose for the sake of argument that Q_1 crosses P_2. Let P'_2 be the “right envelope”
$L(Q_1, P_2)$ and let Q'_2 be the “left envelope” $U(Q_1, P_2)$. By definition, P'_2 is a path from s_2
to t_2, and Q'_2 is a path from s_1 to t_1. Let $P' = \{P_1, P'_2, P_4\}$ and $Q' = \{Q'_1, Q_2, Q_3, Q_4\}$.

The path P_2 separates P'_2 from both P_1 and P_4, so the paths in \mathcal{P}' are vertex-disjoint.
Similarly, Q_1 separates Q'_2 from Q_2, Q_3, and Q_4, so the paths in \mathcal{Q}' are vertex-disjoint.

Lemma 3.1 implies that $\ell(\mathcal{P}) + \ell(\mathcal{Q}) \geq \ell(\mathcal{P}') + \ell(\mathcal{Q}')$. However, the unique optimality
of \mathcal{P} implies $\ell(\mathcal{P}) < \ell(\mathcal{P}')$, and the unique optimality of \mathcal{Q} implies that $\ell(\mathcal{Q}) < \ell(\mathcal{Q}')$, so we
have a contradiction. We conclude that Q_1 does not cross P_2.

A symmetric argument implies that Q_2 does not cross P_1.

Lemma 3.4. Q_1 and Q_2 do not cross P_4.

Proof. Similar to that of Lemma 3.3; see the appendix for details.

Lemma 3.5. Q_4 crosses neither P_1 nor P_2.

Proof. We prove that Q_4 does not cross P_1; the proof for the other statement is symmetric.

Suppose for the sake of argument that Q_4 crosses P_1. Let $P'_1 = U(P_1, Q_3)$, $P'_2 = U(P_2, Q_3)$, and $P'_4 = U(P_4, Q_4)$. Let $Q'_3 = L(P_1, L(P_2, Q_3))$ and $Q'_4 = L(P_4, Q_4)$. Finally,
let $P' = \{P'_1, P'_2, P'_4\}$ and $Q' = \{Q_1, Q_2, Q'_3, Q'_4\}$. As in the previous proofs, we claim that \mathcal{P}'
and \mathcal{Q}' are sets of vertex-disjoint paths.

P_1 separates P'_1 from P'_2. Suppose for the sake of argument that P'_1 meets P'_4 at a
vertex x. Since x is on P'_1, it is inside R_1 and it is on or above Q_3. Since x is on P'_4, it is
either on P_4 or Q_4. If x is on P_4, then since x is inside R_1, P_4 touches P_1. If x is on Q_4, then
since x is on or above Q_3, Q_4 touches Q_1. In both cases we obtain a contradiction. A similar
argument shows that P'_2 does not meet P'_4, so the walks in \mathcal{P}' are pairwise vertex-disjoint.

Q_1 and Q_2 are trivially disjoint, and Q_3 separates Q_1 and Q_2 from Q'_3 and Q'_4. Suppose
Q'_3 intersects Q'_1 at a vertex x. Since x is on Q'_4, it is inside R_4 and on or below Q_4.
Because x is on Q'_1, it is either in P_1, P_2, or Q_3. If x is on Q_3, then because x is on
or below Q_4, Q_3 crosses below Q_1. If x is on P_1 or P_2, then since x is in R_4, either P_1
or P_2 touches P_4. In all cases we obtain a contradiction, so the paths in \mathcal{Q}' are pairwise
vertex-disjoint.

Each component of $Q'_3 \setminus Q_3$ is an open subpath of P_1 or P_2 that lies entirely below Q_3
and therefore is not contained in P'_1 or P'_2. Similarly, each component of $P'_3 \setminus P_1$ is an open
subpath of Q_3 that lies entirely above P_1 and therefore is not contained in P'_2 or Q'_1, and each
component of $P'_3 \setminus P_2$ is an open subpath of Q_3 that lies entirely above P_2 and therefore is
not contained in P'_1 or Q'_3. It follows that $\ell(\mathcal{P}'_1) + \ell(\mathcal{P}'_2) + \ell(\mathcal{Q}'_3) \leq \ell(\mathcal{P}) + \ell(\mathcal{P}_2) + \ell(\mathcal{Q}_3)$, and
therefore $\ell(\mathcal{P}) + \ell(\mathcal{Q}) \geq \ell(\mathcal{P}') + \ell(\mathcal{Q}')$, contradicting the unique optimality of \mathcal{P} and \mathcal{Q}.

Corollary 3.6. Q_4 does not meet P_1 or P_2.

Lemma 3.7. Q_4 lies entirely in R_4.

Proof. For the sake of argument, suppose Q_4 leaves R_4. Define two new paths $P'_4 = U(P_4, Q_4)$
and $Q'_4 = L(P_4, Q_4)$. Let $P' = \{P_1, P_4, P'_4\}$ and $Q = \{Q_1, Q_2, Q_3, Q'_4\}$.

esa2018
Corollary 3.6 implies that P'_4 does not meet P_1 or P_2, so the walks in P' are pairwise vertex-disjoint. On the other hand, Q_4 separates Q'_4 from Q_1, Q_2, and Q_3, so the paths in Q' are pairwise vertex-disjoint. Lemma 3.1 implies $\ell(P'_4) + \ell(Q'_4) \leq \ell(P_3) + \ell(Q_3)$, and therefore $\ell(P') + \ell(Q') \leq \ell(P) + \ell(Q)$, contradicting the unique optimality of P and Q. ◀

To complete the proof of Theorem 3.2, we must consider two cases, depending on whether or not Q_3 crosses P_4. Typical solutions for these two cases are illustrated in Figure 1(b).

3.2.1 Q_3 does not cross P_4

▶ **Lemma 3.8.** If Q_3 does not cross P_4, then Q_1 and Q_2 do not meet P_4.

Proof. Q_3 separates s_1, t_1, s_2, t_2 from s_4 and t_4. Thus, Q_3 separates Q_1 and Q_2 from P_4. ◀

▶ **Lemma 3.9.** If Q_3 does not cross P_4, then every component of $Q_1 \setminus R'_1$ meets P_2, and every component of $Q_2 \setminus R'_2$ meets P_1.

Proof sketch. Suppose some component q of of $Q_1 \setminus R'_1$ does not meet P_2, as shown at the top of Figure 2. We can derive a contradiction using a similar exchange argument to Lemma 3.7; see the appendix for details. A symmetric argument proves that every component of $Q_2 \setminus R'_2$ meets P_1. ◀

▶ **Lemma 3.10.** If Q_3 does not cross P_4, then either $Q_1 \subset R_1$ or $Q_2 \subset R_2$ or both.

Proof. For the sake of argument, suppose Q_1 leaves R_1 and Q_2 leaves R_2. Let S_1 be the closed region bounded by $Q_1 \cup C_1$ and let S_2 be the closed region bounded by $Q_2 \cup C_2$. We call each component of $S_1 \setminus R'_1$ a left finger, and each component of $S_2 \setminus R'_2$ a right finger. Lemma 3.9 and the Jordan curve theorem imply that each finger is a topological disk that intersects both P_1 and P_2. Thus, the fingers can be linearly ordered by their intersections with P_1 from s_1 to t_1 (from bottom to top in Figure 3). Because Q_1 is a simple path, the fingers intersect Q_1 in the same order. Without loss of generality, suppose the last finger in this order is a right finger. Let s be the last left finger, and let s' be the right finger immediately after s.

Let w be the last node of P_1 (closest to t_1) that lies in s, and let y be the last node of P_2 (closest to t_2) that that lies in s'. We define four subpaths $p_1 = P_1[w, t_1]$, $q_1 = Q_1[w, t_1]$, $p_2 = P_2[s_2, y]$, and $q_2 = Q_2[s_2, y]$, as shown on the left of Figure 3. (Paths p_2 and q_2 could enclose more than one right finger.)

Now exchange the subpaths $p_1 \leftrightarrow q_1$ and $p_2 \leftrightarrow q_2$ to define four new walks $P'_1 = P_1 \setminus p_1 \cup q_1$, $Q'_1 = Q_1 \setminus q_1 \cup p_1$, $P'_2 = P_2 \setminus p_2 \cup q_2$, and $Q'_2 = Q_2 \setminus q_2 \cup p_2$. Finally, let
Lemma 3.13. Proof. The proof is similar to that of Lemma 3.3; see the appendix for details.

Lemma 3.12. If Q_3 crosses P_4, then either Q_1 or Q_2 (or both) touches P_4.

Proof. The proof is similar to that of Lemma 3.3; see the appendix for details.

3.2.2 Q_3 crosses P_4

Lemma 3.11. If Q_3 does cross P_4, then every component of $Q_1 \setminus R_1$ meets P_2 or P_4 or both, and every component of $Q_2 \setminus R_2$ meets P_1 or P_4 or both.

Proof. The proof is the same as that of Lemma 3.9.

Lemma 3.13. Suppose Q_3 crosses P_4 and Q_1 touches P_4. If u and b are defined as above, then Q_2 does not touch $P_4[u, b]$.

Figure 3 Another impossible configuration, for the proof of Lemma 3.10.
Proof. Suppose for the sake of contradiction that \(Q_2 \) touches \(P_4[u, b] \). We define six special vertices \(v, y, z, w, x \), and \(a \), as shown in Figure 4(a):

- Vertex \(v \) is the first vertex on \(Q_2 \cap P_1 \). By assumption, \(v \) is on \(P_4[u, b] \).
- If \(Q_3[s, 3] \) touches \(P_1 \), then \(y \) is the last vertex in their intersection. Otherwise, \(y = s_1 \).
- If \(Q_3[b, t_3] \) touches \(P_2 \), then \(z \) is the first vertex in their intersection. Otherwise, \(z = t_2 \).
- Vertex \(w \) is the first vertex on \(P_1[y, t_1] \) that is also on \(Q_1 \).
- Vertex \(x \) is the last vertex on \(P_2[s_2, z] \) that is also on \(Q_2 \).
- Vertex \(a \) is the first vertex on \(Q_3[y, t_3] \) that is also on \(P_4 \).

Let \(p_1 = P_1[w, t_1] \), \(q_1 = Q_1[w, t_1] \), \(p_2 = P_2[s_2, x] \), \(q_2 = Q_2[s_2, x] \), \(q_3 = Q_3[a, b] \), and \(p_4 = P_4[a, b] \). Let \(P_1' = P_1 \setminus q_1 \), \(Q_1' = Q_1 \setminus q_1 \cup p_1 \), \(P_2' = P_2 \setminus q_2 \), and \(Q_2' = Q_2 \setminus q_2 \cup p_2 \). Let \(P_3' = L(P_4 \setminus P_2 \cup q_3) \) and \(Q_3' = U(Q_3 \setminus q_3 \cup p_4) \). Finally, let \(P' = \{ P_1', P_2', P_3' \} \) and \(Q' = \{ Q_1', Q_2', Q_3', Q_4 \} \).

\(Q_1[u, t_1] \cup P_4 \) separates \(P_1 \) from \(q_2 \), and \(Q_2[s_2, v] \cup P_4 \) separates \(P_2 \) from \(q_1 \). It follows that \(P_1' \) and \(P_2' \) are disjoint. Any vertex on both \(P_1' \) and \(P_2' \) must lie on \(q_1 \), because \(P_4' \subseteq R_4 \), but \(Q_3 \) separates \(q_1 \) from \(P_4' \). It follows that \(P_1' \) and \(P_4' \) are disjoint. A symmetric argument implies that \(P_2' \) and \(P_4' \) are disjoint. We conclude that the walks in \(P' \) are pairwise vertex-disjoint.

\(Q_1[u, t_1] \cup P_4 \) separates \(Q_1 \) from \(q_2 \), and \(Q_2[s_2, v] \cup P_4 \) separates \(Q_2 \) from \(q_1 \). Thus, \(P_1' \) and \(Q_3' \) are disjoint, which implies that \(Q_1' \) and \(Q_3' \) are disjoint. It follows that if \(Q_1' \) and \(Q_3' \) share a vertex \(c \), we must have \(c \in Q_3 \cap Q_1 \subseteq p_4 \) and therefore \(c \in Q_1 \setminus q_1 \). But this is impossible, because \(Q_3[s, 3] \cup P_1[y, w] \cup Q_1[w, t_1] \) separates \(Q_1 \) from \(p_4 \). A similar argument shows that \(Q_2' \) is disjoint from \(Q_3' \). Finally, \(Q_1 \) separates \(Q_2' \) from \(Q_4 \). We conclude that the walks in \(Q' \) are pairwise vertex-disjoint. In the appendix, we prove that \(\ell(P_1') + \ell(Q_3') \leq \ell(P_4') \) and \(\ell(Q_3') \); see Lemma A.2. It follows that \(\ell(P') + \ell(Q) \leq \ell(P') + \ell(Q') \), contradicting the unique optimality of \(P' \) and \(Q' \).

\[\blacksquare \]

Lemma 3.14. If \(Q_3 \) crosses \(P_4 \) and \(Q_1 \) touches \(P_4 \), then some component of \(Q_1 \setminus R_1 \) touches both \(P_2 \) and \(P_3 \).

Proof. Lemma 3.13 implies that \(Q_2 \) does not touch \(P_4[u, b] \). Suppose for the sake of argument that no component of \(Q_1 \setminus R_1 \) touches both \(P_4 \) and \(P_2 \). We define four special vertices \(y, w, x, \) and \(a \), as shown in Figure 4(b):

- If \(Q_3[s, 3] \) touches \(P_1 \), then \(y \) is the last vertex in their intersection. Otherwise, \(y = s_1 \).
- Vertex \(w \) is the first vertex on \(P_1[y, t_1] \) that is also on \(Q_1 \).
- Vertex \(x \) is the first vertex on \(Q_1[u, t_1] \) that is also on \(P_1 \).
Vertex \(a\) is the first vertex on \(Q_3[y, t_3]\) that is also on \(P_4\).

Let \(p_1 = P_1[w, x]\), \(q_1 = Q_1[w, x]\), \(p_4 = P_4[a, b]\), and \(q_3 = Q_3[a, b]\). Let \(P'_1 = P_1 \setminus p_1 \cup q_1\) and \(Q'_1 = Q_1 \setminus q_1 \cup p_1\). Define \(P'_4 = L(P_4, P_4 \setminus p_4 \cup q_3)\) and \(Q'_3 = U(Q_3, Q_3 \setminus q_3 \cup p_4)\). Let \(P' = \{P'_1, P_2, P'_4\}\) and \(Q' = \{Q'_1, Q_2, Q'_3, Q_4\}\).

An argument similar to the proof of Lemma 3.13 shows that \(P'\) and \(Q'\) are each sets of pairwise disjoint walks; see Lemma A.3 in the appendix. The same argument as Lemma A.2 implies that \(\ell(P'_1) + \ell(Q'_3) \leq \ell(P_4) + \ell(Q_3)\). As usual, it follows that \(\ell(P') + \ell(Q') \leq \ell(P) + \ell(Q)\), contradicting the unique optimality of \(P\) and \(Q\).

Lemma 3.15. If \(Q_3\) crosses \(P_4\) and \(Q_1\) touches \(P_4\), then \(Q_2\) does not touch \(P_4\).

Proof. Define a far-reaching subpath to be a component of \(Q_1 \setminus R_1\) that touches both \(P_4\) and \(P_2\) or a component of \(Q_2 \setminus R_2\) that touches both \(P_4\) and \(P_1\). Lemma 3.14 says that some component of \(Q_1 \setminus R_1\) is a far-reaching subpath. Symmetrically, if \(Q_2\) were to touch \(P_4\), then some component of \(Q_2 \setminus R_2\) would also be a far-reaching subpath, but the Jordan Curve Theorem implies that we cannot have both a far-reaching subpath of \(Q_1 \setminus R_1\) and a far-reaching subpath of \(Q_2 \setminus R_2\). It follows that \(Q_2\) does not touch \(P_4\).

Lemma 3.16. If \(Q_3\) crosses \(P_4\) and \(Q_1\) touches \(P_4\), then \(Q_2 \subset R_2\).

Proof. The proof is similar to that of Lemma 3.10; see the appendix for details.

Corollary 3.17. If \(Q_3\) crosses \(P_1\), then either \(Q_1 \subset R_1\) or \(Q_2 \subset R_2\).

The proof of Theorem 3.2 is now complete.

4 Subgraph Solutions

Our algorithm solves several parallel instances of \(k\)-min-sum inside certain subgraphs of \(G\). To prove that our algorithm is correct, we need to argue that the subgraph solutions coincide exactly with portions of the desired global solution. As an intermediate step, we first show that the subgraph solutions interact with the global solution in a limited way. Unlike the structural results in the previous section, the following lemma applies to planar \(k\)-min-sum instances for arbitrary \(k\).

Lemma 4.1. Let \((G, \{s_i, t_i \mid 1 \leq i \leq k\})\) be a planar instance of \(k\)-min-sum, with all terminals \(s_i\) and \(t_i\) on \(\partial G\), whose unique solution is \(Q = \{Q_1, \ldots, Q_k\}\). Let \(S\) be a subset of \(\{1, 2, \ldots, k\}\) such that the induced planar min-sum instance \((G, \{s_i, t_i \mid i \in S\})\) is parallel.

Let \(H\) be a subgraph of \(G\) such that
1. \(Q_i \cap H \neq \emptyset\) if and only if \(i \in S\), and
2. for all distinct \(i, j \in S\), no component of \(Q_i \cap H\) separates components of \(Q_j \cap H\) from each other in \(H\).

For each index \(i \in S\), let \(u_i\) and \(v_i\) be vertices of \(Q_i \cap \partial H\) such that \(Q_i[u_i, v_i] \subseteq H\). Finally, suppose \((H, \{u_i, v_i \mid i \in S\})\) is a parallel planar min-sum instance, whose unique solution is \(\Pi = \{\pi_i \mid i \in S\}\). Then for all indices \(i, j \in S\), if \(i \neq j\), then \(\pi_i\) does not cross \(Q_j\).

Proof. First we establish some notation and terminology. Let \(\kappa = |S|\), and re-index the terminals so that \(S = \{1, 2, \ldots, \kappa\}\) and the counterclockwise order of terminals around the outer face of \(H\) is \(u_1, \ldots, u_\kappa, v_\kappa, \ldots, v_1\). Fix an index \(i\) such that \(1 \leq i < \kappa\), and consider the paths \(Q_i\) and \(\pi_{i+1}\).
Let C ("ceiling") denote the path in ∂G from s_1 to t_i that does not contain s_{i+1} or t_{i+1}, and let A be the closed region bounded by C and Q_i. A point in G is above Q_i if it lies in $A \setminus Q_i$ and below Q_i if it does not lie in A.

Similarly, let F ("floor") denote the path in ∂H from u_{i+1} to v_{i+1} that does not contain u_i or v_i, and let B be the closed region bounded by F and π_{i+1}. A point in H is below π_{i+1} if it lies in $B \setminus \pi_{i+1}$ and above π_{i+1} if it does not lie in B.

Paths Q_i and π_{i+1} also divide the interior of G into connected regions, exactly one of which has the entire path C on its boundary; call this region U. Finally, let Q'_i denote the unique path in G from s_i to t_i such that $C \cup Q'_i$ is the boundary of U. Every point on Q'_i lies on or above Q_i, and our assumption (2) implies that every point in $Q'_i \cap H$ lies on or above π_{i+1} . Thus, intuitively, Q'_i is the “upper envelope” of Q_i and π_{i+1}. In particular, $Q'_i = Q_i$ if and only if Q_i and π_{i+1} are disjoint.

Similarly, paths Q_i and π_{i+1} divide the interior of H into closed connected regions, exactly one of which contains F on its boundary; call this region L. Let π'_{i+1} denote the unique path in H from u_{i+1} to v_{i+1} such that $D \cup \pi'_{i+1}$ is the boundary of L. Assumption (2) implies that every point on π'_{i+1} lies on or below both π_{i+1} and Q_i. Thus, intuitively, π'_{i+1} is the “lower envelope” of Q_i and π_{i+1}. In particular, $\pi'_{i+1} = \pi_{i+1}$ if and only if Q_i and π_{i+1} are disjoint.

Each component of $Q'_i \setminus Q_i$ is an open subpath of π_{i+1} that lies entirely above Q_i and therefore is not contained in π'_{i+1}. Similarly, every component of $\pi'_{i+1} \setminus \pi_{i+1}$ is an open subpath of $Q_i \cap H$ that lies entirely below π_{i+1} and therefore is not contained in Q'_i. It follows that $\ell(Q'_i) + \ell(\pi'_{i+1}) \leq \ell(Q_i) + \ell(\pi_{i+1})$.

Finally, let $Q' = \{Q'_1, \ldots, Q'_{\kappa-1}, Q_\kappa, \ldots, Q_k\}$ and $\Pi' = \{\pi'_1, \pi'_2, \ldots, \pi'_\kappa\}$; see Figure 1 for an example of our construction.

![Figure 5](image_url) Proof of Lemma 4.1. The inner red circle is ∂H. (a) The original paths Q (solid blue) and Π (dashed red). (b) The transformed paths Q' (solid blue) and Π' (dashed red).

Now suppose for the sake of argument that Q_i crosses π_{i+1} for some index i, or equivalently, that $Q' \neq Q$ and $\Pi' \neq \Pi$. As usual, to derive a contradiction, we need to show that Q' and Π' are sets of disjoint walks. The following case analysis implies that the walks in Q' are pairwise disjoint:

- None of the paths Q_1, \ldots, Q_κ intersect H. On the other hand, for all $i < \kappa$, $Q'_i \setminus Q_i$ is a subset of π_{i+1} and therefore lies in H. Trivially, Q_1, \ldots, Q_κ are disjoint from $Q_{\kappa+1}, \ldots, Q_k$. Thus, paths $Q'_1, \ldots, Q'_{\kappa-1}, Q_\kappa$ are disjoint from paths $Q_{\kappa+1}, \ldots, Q_k$.

- Q_κ lies entirely below $Q_{\kappa-1}$ and therefore entirely below $Q'_{\kappa-1}$.

- Now consider any point $x \in Q'_i$, for any index $1 \leq i < \kappa - 1$. Point x lies on or above Q_i (because every point in Q'_i lies on or above Q_i), and therefore lies above Q_{i+1}. So we must have $x \in \pi_{i+1}$ and therefore $x \in H$. But because $x \in Q'_i \cap H$, x lies either on or
above \(\pi_{i+1} \), and therefore lies above \(\pi_{i+2} \). So \(x \) cannot lie on \(\mathcal{Q}_{i+1}' \). We conclude that \(\mathcal{Q}_i' \) and \(\mathcal{Q}_{i+1}' \) are disjoint.

Similar case analysis implies that the walks in \(\Pi' \) are pairwise disjoint:

- \(\pi_1 \) lies entirely above \(\pi_2 \) and therefore entirely above \(\pi_2' \).
- Now consider any point \(x \in \pi_{i+1}' \), for any index \(1 < i < \kappa \). Point \(x \) lies on or below \(\mathcal{Q}_i \), and therefore below \(\mathcal{Q}_{i-1} \). On the other hand, \(x \) lies on or below \(\pi_{i+1} \), and therefore lies below \(\pi_i \). So \(x \) cannot lie in \(\pi_i' \). We conclude that \(\pi_i' \) and \(\pi_{i+1}' \) are disjoint.

The unique optimality of \(\Pi \) and \(\mathcal{Q} \) implies \(\ell(\Pi) < \ell(\Pi') \) and \(\ell(\mathcal{Q}) < \ell(\mathcal{Q}') \). On the other hand, we immediately have

\[
\ell(\Pi) + \ell(\mathcal{Q}) = \ell(\pi_1) + \sum_{i=1}^{\kappa-1} (\ell(Q_i) + \ell(\pi_{i+1})) + \sum_{i=\kappa}^{k} \ell(Q_i)
\]

\[
\leq \ell(\pi_1) + \sum_{i=1}^{\kappa-1} (\ell(Q_i') + \ell(\pi_{i+1}')) + \sum_{i=\kappa}^{k} \ell(Q_i) = \ell(\Pi') + \ell(\mathcal{Q}'),
\]

giving us a contradiction.

We conclude that \(\pi_i \) does not cross \(\mathcal{Q}_{i-1} \) for any index \(i \). It follows immediately that \(\pi_i \) does not cross (in fact, does not touch) any \(\mathcal{Q}_j \) such that \(j < i - 1 \). A symmetric argument implies that \(\pi_i \) does not cross any \(\mathcal{Q}_j \) such that \(j > i \).

5 Algorithm

Now we are finally ready to describe our algorithm for computing \(\mathcal{Q} \) given \(\mathcal{P} \). By Theorem 3.2, we can assume without loss of generality that \(\mathcal{Q}_2 \subset \mathcal{R}_2 \). We define five anchor vertices as follows; see Figure 6.

- If \(\mathcal{Q}_1 \) meets \(\mathcal{P}_2 \), then \(a \) is the first vertex of \(\mathcal{Q}_1 \) that is also on \(\mathcal{P}_2 \), and \(b \) is the first vertex in the suffix \(\mathcal{P}_2[a, t_2] \) that is also on \(\mathcal{Q}_2 \); otherwise, \(a = t_1 \) and \(b = s_2 \).
- If \(\mathcal{Q}_3 \) meets \(\mathcal{P}_2 \), then \(c \) is the first vertex in their intersection; otherwise, \(c = t_3 \).
- If \(\mathcal{P}_4 \) meets the prefix \(\mathcal{Q}_3[s_3, c] \), then \(d \) is the last vertex of \(\mathcal{P}_4 \) in their intersection; otherwise, \(d = s_4 \).
- Finally, \(e \) is the first vertex of the suffix \(\mathcal{P}_4[d, t_4] \) that is also on \(\mathcal{Q}_4 \).

We also split each path \(\mathcal{Q}_i \) into a prefix \(\mathcal{Q}_i' \) and a suffix \(\mathcal{Q}_i'' \) that meet at a single vertex. Specifically, we split \(\mathcal{Q}_1 \) at \(a \), we split \(\mathcal{Q}_2 \) at \(b \), we split \(\mathcal{Q}_3 \) at \(c \), and we split \(\mathcal{Q}_4 \) at \(e \). Thus, for example, \(\mathcal{Q}_1'' = \mathcal{Q}_1[s_1, a] \) and \(\mathcal{Q}_1'' = \mathcal{Q}_1[a, t_1] \).

![Figure 6](image)

Figure 6 Anchor vertices \(a, b, c, d, e \).

Now suppose we know the locations of the anchor vertices \(a, b, c, d, \) and \(e \). (Our final \(k \)-min-sum algorithm actually enumerates all \(O(n^5) \) possible locations for these vertices.)
Our algorithm computes Q in three phases; each phase solves a parallel instance of the k-min-sum problem (with $k = 2$ or $k = 3$) in a subgraph of G in $O(n)$ time, via minimum-cost flows. The subpaths of Q computed in each phase are shown in Figure 7.

Let H_1 be the subgraph of G obtained by deleting every vertex in R_2 except a and c, every edge incident to s_4 or e outside of R_1, and every vertex of $P_4(d, t_4)$ except e. The first phase of our algorithm computes the shortest set of vertex-disjoint paths in H_1 from s_1 to a, from s_3 to c, and from s_4 to e. Call these paths α, β, and γ, respectively.

If Q_1 and P_2 are disjoint, let $\delta = t_1$ and $\epsilon = s_2$. Otherwise, let H_2 be the subgraph of G obtained by deleting every vertex of $P_2(a, t_2)$ except b, all edges incident to b that leave R_2, and every vertex of α except a. The second phase of our algorithm computes the shortest vertex-disjoint paths in H_2 from t_1 to a and from s_2 to b. Call these paths δ and ϵ, respectively.

Finally, let H_3 be the subgraph of G obtained by deleting all vertices in $\alpha \cdot rev(\delta)$, all vertices in $\beta[s_3, b]$, all vertices in $\gamma[s_4, e]$, and all vertices in $\epsilon[s_2, b]$. The last phase of our algorithm computes the shortest vertex-disjoint paths in H_3 from b to t_2, from c to t_3, and from e to t_4. Call these paths ζ, η, and θ, respectively.

In the appendix, we prove that our previous lemmas imply the following:

Lemma 5.1. $\alpha = Q_1^1$, $\beta = Q_3^3$, and $\gamma = Q_4^4$.

Lemma 5.2. $rev(\delta) = Q_1^1$ and $\epsilon = Q_2^2$.

Lemma 5.3. $\zeta = Q_2^2$, $\eta = Q_3^3$, and $\theta = Q_4^4$.

Finally, we describe our overall 4-min-sum algorithm. First, in a preprocessing phase, we compute P using the algorithm of Kobayashi and Sommer [16]. Then for all possible choices for the anchor vertices a, b, c, d, e, we compute the paths $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta$ as described above, first under the assumption that $Q_2 \subset R_2$, and then under the symmetric assumption that $Q_1 \subset R_1$ (mirroring the definitions of the anchor vertices and the paths). The previous lemmas imply that for the correct choice of anchor vertices, and the correct assumption $Q_1 \subset R_1$ or $Q_2 \subset R_2$, the resulting walks $Q_1 = \alpha \circ rev(\delta)$, $Q_2 = \epsilon \circ \zeta$, $Q_3 = \beta \circ \eta$, and $Q_4 = \gamma \circ \theta$ comprise the optimal solution for the given instance of the 4-min-sum problem.

Altogether, our algorithm solves $O(n^3)$ parallel instances of 2-min-sum and 3-min-sum, each in $O(n)$ time, via minimum-cost flows. Thus, the overall running time of our algorithm is $O(n^6)$.
References

A Omitted Proofs

A.1 Proofs from Section 3

Proof of Lemma 3.4. Suppose for the sake of argument that Q_1 crosses P_4. Let $P_4' = L(Q_1, P_4)$ and $Q_1' = U(Q_1, P_4)$. Let $\mathcal{P}' = \{P_1, P_2, P_4'\}$ and $\mathcal{Q}' = \{Q_1', Q_2, Q_3, Q_4\}$. P_4 separates P_4' from P_1 and P_2, so the walks in \mathcal{P}' are pairwise vertex-disjoint. Q_1 separates Q_1' from Q_2, Q_3, and Q_4, so the walks in \mathcal{Q}' are pairwise vertex-disjoint.

The optimality of \mathcal{P} implies $\ell(\mathcal{P}) < \ell(\mathcal{P}')$, and the optimality of \mathcal{Q} implies that $\ell(\mathcal{Q}) < \ell(\mathcal{Q}')$. On the other hand, $\ell(\mathcal{P}) + \ell(\mathcal{Q}) \geq \ell(\mathcal{P}') + \ell(\mathcal{Q}')$, a contradiction.

A symmetric argument implies that Q_2 does not cross P_4. ▶

Proof of Lemma 3.9. Suppose some component q of $Q_1 \setminus R_2'$ does not meet P_2, as shown at the top of Figure 2. We can derive a contradiction using a similar exchange argument to Lemma 3.7.

The endpoints x and y of q must lie on P_1; let p denote the subpath $P_1[x, y]$. Define two new paths $P_1' = P_1 \setminus p \cup q$ and $Q_1' = Q_1 \setminus q \cup p$. Clearly P_1' and Q_1' are both walks from s_1 to t_1. Let $\mathcal{P}' = \{P_1', P_2, P_4\}$ and $\mathcal{Q} = \{Q_1', Q_2, Q_3, Q_4\}$. Lemma 3.8 and our assumption that q does not meet P_2 imply that the walks in \mathcal{P}' are pairwise vertex-disjoint. On the other hand, p lies in the disk enclosed by $P_1' \cup C_1$, which implies that the walks in \mathcal{Q}' are also pairwise vertex-disjoint. The optimality of \mathcal{P} implies that $\ell(\mathcal{P}) < \ell(\mathcal{P}')$, and the optimality of \mathcal{Q} implies that $\ell(\mathcal{Q}) < \ell(\mathcal{Q}')$, but clearly $\ell(\mathcal{P}) + \ell(\mathcal{Q}) = \ell(\mathcal{P}') + \ell(\mathcal{Q}')$, so we have a contradiction.

A symmetric argument implies every component of $Q_2 \setminus R_2'$ meets P_1. ▶

Proof of Lemma 3.12. Suppose for the sake of argument that Q_1 and Q_2 do not touch P_4.

Let q be a maximal component of $Q_3 \cap R_4$, and let a and b be the endpoints of q. Let $p = P_4[a, b]$, and define two new paths $P_4' = P_4 \setminus p \cup q$ and $Q_3' = Q_3 \setminus q \cup p$. Let $\mathcal{P}' = \{P_1, P_2, P_4'\}$ and $\mathcal{Q}' = \{Q_1, Q_2, Q_3', Q_4\}$. P_4 separates P_4' and P_2 from q, so P_1 and P_4 are disjoint from P_4' and the walks in \mathcal{P}' are pairwise vertex-disjoint. By assumption, Q_1 and Q_2 do not touch p, so Q_1 and Q_2 are disjoint from Q_3'. Also, P_4' separates p from Q_4, so Q_3' is disjoint from Q_4. It follows that the walks in \mathcal{Q}' are pairwise vertex-disjoint.

The unique optimality of \mathcal{P} implies that $\ell(\mathcal{P}') < \ell(\mathcal{P})$, and the unique optimality of \mathcal{Q} implies that $\ell(\mathcal{Q}') < \ell(\mathcal{Q})$, but clearly $\ell(\mathcal{P}) + \ell(\mathcal{Q}) = \ell(\mathcal{P}') + \ell(\mathcal{Q}')$, a contradiction. ▶

We need the next two lemmas to complete the proof of Lemma 3.13.

Lemma A.1. If vertex u precedes vertex v in P_4, then either u precedes v in Q_3, or $P_4[u, v] = rev(Q_3[u, v])$.

Proof. Suppose for the sake of argument that u precedes v in P_4, v precedes u in Q_3, and $P_4[u, v] \neq rev(Q_3[u, v])$. Without loss of generality, assume that none of the vertices in $Q_3(u, v)$ are on P_4. Let $q_3 = Q_3[u, v]$ and $p_4 = P_4[u, v]$. Define P_4' by removing all cycles from $P_4 \setminus p_4 \cup rev(q_3)$, and define Q_3' by removing all cycles from $Q_3 \setminus q_3 \cup rev(p_4)$. This
means that Q'_3 is a simple path from s_3 to t_3 that does not cross Q_3, and P'_4 is a simple path from s_4 to t_4 that does not cross P_4. Let $\mathcal{P} = \{P_1, P_2, P'_4\}$ and $\mathcal{Q} = \{Q_1, Q_2, Q'_3, Q_4\}$.

If $Q_4(u, v) \subseteq R_4$, then p_4 does not meet Q_4 by Lemma 3.7, and Q_3 separates Q'_3 from Q_2 and Q_4. It follows that the walks in \mathcal{Q} are pairwise vertex-disjoint. Path P_4 separates q_3 from P_1 and P_2, so the paths in \mathcal{P} are pairwise vertex-disjoint.

If $Q_4(u, v) \cap R_4 = \emptyset$, then p_4 does not meet Q_1 or Q_2 by Lemma 3.4, and Q_3 separates Q'_3 from Q_4. It follows that the walks in \mathcal{Q} are pairwise vertex-disjoint. Walk $P_4[u, v] \cup Q_4[u, t_4]$ separates q_3 from P_1 and P_2, so the paths in \mathcal{P} are pairwise vertex-disjoint.

The optimality of \mathcal{P} implies that $\ell(\mathcal{P}') < \ell(\mathcal{P})$, and the optimality of \mathcal{Q} implies that $\ell(\mathcal{Q}') < \ell(\mathcal{Q})$, but clearly $\ell(\mathcal{P}) + \ell(\mathcal{Q}) = \ell(\mathcal{P}') + \ell(\mathcal{Q}')$.

Lemma A.2. In the proof of Lemma 3.13, we have $\ell(P'_4) + \ell(Q'_3) \leq \ell(P_4) + \ell(Q_3)$.

Proof. Suppose e is an edge in P'_4 and $Q'_3 \setminus Q_3$. The edge e is strictly above Q_3 and on p_4. Thus e is not in $P_4 \cup q_3$ and must be strictly below it. But Lemma A.1 implies that e in p_4 cannot be both strictly above Q_3 and strictly below $P_4 \cup q_3$. It follows that any edge in P'_4 and Q'_3 must be in P_4. It follows that $\ell(P'_4) + \ell(Q'_3) \leq \ell(P_4) + \ell(Q_3)$.

Lemma A.3. In the proof of Lemma 3.14, \mathcal{P}' and \mathcal{Q}' are each sets of disjoint walks.

Proof. By assumption, q_1 is disjoint from P_2, so P'_4 is disjoint from P_2. The same argument as in the proof of Lemma 3.13 shows that P'_4 is disjoint from P'_4. Additionally, P_4 separates P_2 from P'_4. It follows that the walks in \mathcal{P}' are pairwise vertex-disjoint.

$P_3[x, t_1] \cup Q'[x, u] \cup P_1$ separates p_1 from Q_2, so Q'_4 is disjoint from Q_2. Suppose for the sake of argument that Q'_1 and Q'_3 meet at c. The definition of y implies that $Q_3[y, b]$ does not meet p_1, while the definition of x implies that $Q_3[x, t]_3$ does not meet p_1. Thus, $c \in Q'_3$ implies $c \in p_4$, and $c \in Q'_1$ implies $c \in Q'_1 \setminus q_1$. But $Q_1[x, t_1]$ doesn’t meet p_4 by the definition of x, and $Q_3[x, y] \cup P_1[y, w] \cup Q_1[w, t_1]$ separates $Q_1[s, w]$ from p_4, so we have a contradiction. By assumption, p_4 and Q_2 are disjoint, so Q_2 and Q'_4 are disjoint. Q_3 separates Q'_3 from Q_4. We have shown that the walks in \mathcal{Q}' are pairwise vertex-disjoint.

Proof of Lemma 3.16. By Lemma 3.14 and 3.15, there exists a component of $Q_1 \setminus R'_1$ that touches both P_2 and P_4, and Q_2 does not touch P_4. We will show that $Q_2 \subseteq R_2$. As in the proof of Lemma 3.10, define S_1 to be the closed region bounded by $Q_1 \cup C_1$, define S_2 to be the closed region bounded by $Q_2 \cup C_2$, call each component of $S_1 \setminus R'_1$ intersecting both P_1 and P_2 a left finger, and call each component of $S_2 \setminus R'_2$ a right finger. Let f be the unique left finger that touches both P_2 and P_4.

The proof of Lemma 3.10 shows that no left fingers exist after the last right finger, and no right fingers exist after the last left finger. Repeatedly applying this observation shows that no fingers exist except for the first finger f. Since no right fingers exist, Q_2 does not touch P_1. Additionally, Q_2 does not touch P_4, so Lemma 3.11 implies that $Q_2 \subseteq R_2$.

A.2 Proofs from Section 5

Our proof of Lemma 5.1 relies on the following lemma, whose proof is similar to that of Lemma 3.3.

Lemma A.4. Q'_3 does not cross P_4.

Jeff Erickson and Yipu Wang

ESA 2018
Proof. The lemma is obvious if $c = t_3$, so assume Q_3 touches P_2.

Suppose Q_1^2 crosses P_1. Let q be any component of $Q_1^2 \cap R_4$. The endpoints x and y of q must lie on P_1; let p denote the subpath $P_1[x,y]$. Define two new paths $Q_3^2 = Q_3 \setminus q \cap p$ and $P_2^2 = P_2 \setminus p \cup q$. Let $\mathcal{P}' = \{P_1, P_2, P_2^2\}$ and $\mathcal{Q}' = \{Q_1, Q_2, Q_3^2, Q_4\}$.

P_4 separates P_1 and P_2 from P_4', so the walks in \mathcal{P}' are pairwise vertex-disjoint. On the other hand, $Q_3^2 \cup P_2$ separates Q_4 from p, and Q_2 does not touch P_4. Furthermore, subpath p lies outside the disk enclosed by $P_4' \cup C_4$, so by Lemma 3.7, Q_4 does not meet p.

It follows that the walks in \mathcal{Q}' are also pairwise vertex-disjoint.

The unique optimality of \mathcal{P} implies $\ell(\mathcal{P}) < \ell(\mathcal{P}')$, and the unique optimality of \mathcal{Q} implies $\ell(\mathcal{Q}) < \ell(\mathcal{Q}')$. But $\ell(\mathcal{P}) + \ell(\mathcal{Q}) = \ell(\mathcal{P}') + \ell(\mathcal{Q}')$, so we have a contradiction. □

Proof of Lemma 5.1. Suppose, for the sake of argument, that $(\alpha, \beta, \gamma) \neq (Q_1^2, Q_3^2, Q_4^2)$, and define a new set of walks $\mathcal{Q}' := \{\alpha \circ Q_1^2, Q_2, \beta \circ Q_3^2, \gamma \circ Q_4^2\}$. The following exhaustive case analysis shows that the paths of \mathcal{Q}' are vertex-disjoint.

- Paths α, β, and γ are disjoint by definition.
- Similarly, Q_1^2, Q_2, Q_3^2, Q_4^2 are subpaths of paths in \mathcal{Q} and thus are disjoint by definition.
- P_2 separates Q_2 from α, β, and γ.
- Lemma 4.1 implies that β and γ do not cross Q_1^2, and therefore do not touch Q_1^2.
- Lemma 4.1 also implies that α does not cross Q_3^2, and therefore does not touch Q_3^2.
- Lemma 4.1 also implies that α and β do not cross Q_4^2, and therefore do not touch Q_4^2.
- Finally, if $d = s_4$, then the definition of H_1 implies that γ does not leave R_3^2 except at s_4 and c, so Lemma A.4 implies that γ is disjoint from Q_4^2. If $d \neq s_4$, then Lemma 4.1 implies that γ does not cross Q_3^2. On the other hand, Q_4^2 does not meet Q_3^2.

The definition of H_1 implies that γ does not cross the path $P_4[d,t_4]$ and only meets it at d or e; on the other hand, neither d nor e are on Q_3^2. Because $Q_3^2 \circ P_4[d,t_4]$ separates γ from Q_3^2, we conclude that Q_3^2 and γ are disjoint.

Because the walks in \mathcal{Q}' are vertex-disjoint, the unique optimality of \mathcal{Q} implies $\ell(\mathcal{Q}) < \ell(\mathcal{Q}')$. On the other hand, the lemmas in Section 3.2 and the definitions of the anchor vertices imply that Q_1^2, Q_3^2, and Q_4^2 are indeed paths in H_1 between the appropriate terminals. Moreover, Q_1^2, Q_3^2, and Q_4^2 are vertex-disjoint, because they are subpaths of the disjoint paths in \mathcal{Q}. Thus, the unique optimality of $\{\alpha, \beta, \gamma\}$ implies that $\ell(\alpha) + \ell(\beta) + \ell(\gamma) < \ell(Q_1^2) + \ell(Q_3^2) + \ell(Q_4^2)$. It follows that $\ell(\mathcal{Q}') < \ell(\mathcal{Q})$, giving us the desired contradiction. □

Proof of Lemma 5.2. The lemma is obvious if Q_1 and P_2 are disjoint, so assume otherwise.

For the sake of argument, suppose $(rev(\delta), \varepsilon) \neq (Q_1^2, Q_3^2)$, and let $\mathcal{Q}' = \{Q_1^2 \circ rev(\delta), \varepsilon \circ Q_3^2, Q_3, Q_4\}$. The following exhaustive case analysis implies that the walks in \mathcal{Q}' are pairwise disjoint.

- δ and ε are disjoint by definition.
- Q_1^2, Q_3^2, Q_3, and Q_4 are disjoint by definition of \mathcal{Q}.
- Lemma 4.1 implies that δ does not cross Q_3^2, and therefore does not touch Q_3^2.
- The path $\alpha \circ P_2[a,t_2]$ separates δ and ε from Q_3 and therefore from Q_4.
- Lemma 5.1 implies that $Q_1^2 \cap V(H_2) = \{a\}$. It follows that ε does not touch Q_1^2.

The unique optimality of \mathcal{Q} now implies $\ell(\mathcal{Q}) < \ell(\mathcal{Q}')$.

On the other hand, the lemmas in Section 3.2 and the definitions of the anchor vertices imply that Q_1^2 and Q_4^2 are vertex-disjoint paths in H_2 between the appropriate terminals. Thus, the unique optimality of $\{\delta, \varepsilon\}$ implies that $\ell(Q_1^2) + \ell(Q_4^2) > \ell(\delta) + \ell(\varepsilon)$, and therefore $\ell(\mathcal{Q}) > \ell(\mathcal{Q}')$, giving us the desired contradiction. □
Proof of Lemma 5.3. Suppose, for the sake of argument, that \((\zeta, \eta, \theta) \neq (Q_t^2, Q_t^3, Q_t^4)\), and let \(Q' := \{Q_1, Q_2^s \circ \zeta, Q_3^s \circ \eta, Q_4^s \circ \theta\}\). As usual, exhaustive case analysis implies that the walks in \(Q'\) are pairwise disjoint. Several cases rely on Lemmas 5.1 and 5.2, which imply that \(\alpha \circ \text{rev}(\delta) = Q_1, \beta = Q_3^s, \gamma = Q_4^s,\) and \(\varepsilon = Q_2^s\).

\(\zeta, \eta, \) and \(\theta\) are disjoint by definition.

\(Q_1, Q_2^s, Q_3^s,\) and \(Q_4^s\) are disjoint by definition of \(Q\).

\(Q_1\) is disjoint from \(H_3\) and thus disjoint from \(\zeta, \eta,\) and \(\theta\).

\(Q_2^s \cap H_3 = \{b\}\), so \(Q_2^s\) is disjoint from \(\eta\) and \(\theta\).

\(Q_3^s \cap H_3 = \{c\}\), so \(Q_3^s\) is disjoint from \(\zeta\) and \(\theta\).

\(Q_4^s \cap H_3 = \{e\}\), so \(Q_4^s\) is disjoint from \(\zeta\) and \(\eta\).

The unique optimality of \(Q\) now implies that \(\ell(Q) < \ell(Q')\).

On the other hand, \(Q_2^s, Q_3^s,\) and \(Q_4^s\) are paths between appropriate terminals in \(H_3\). Thus, the unique optimality of \(\{\zeta, \eta, \theta\}\) implies that \(\ell(Q_2^s) + \ell(Q_3^s) + \ell(Q_4^s) > \ell(\zeta) + \ell(\eta) + \ell(\theta)\), and therefore \(\ell(Q) > \ell(Q)\), giving us the desired contradiction. \(\blacktriangleleft\)