Maximum Integer Flow in Directed Planar Graphs with Vertex Capacities and Multiple Sources and Sinks

Yipu Wang

University of Illinois at Urbana-Champaign

Jan 6, 2019
Maximum flow problem

Input:
- Directed graph \(G = (V, E) \)
- source \(s \in V \), sink \(t \in V \)
- capacity \(c : E \to \mathbb{R}_{\geq 0} \)

Output: a flow \(f : E \to \mathbb{R} \) such that
- \(\sum_{uv} f(uv) = \sum_{vw} f(vw) \quad \forall v \in V \setminus \{s, t\} \) (flow conservation)
- \(0 \leq f(e) \leq c(e) \quad \forall e \in E \) (arc capacities)
- \(\sum_{sv} f(sv) - \sum_{us} f(us) \) is maximized

Solvable in \(O(mn) \) time [Orlin ’13]
Our maximum flow problem

- G is planar
- S is a set of sources, T is a set of sinks
 - Maximize

 \[\sum_{s \in S} \left(\sum_{sv} f(sv) - \sum_{us} f(us) \right) \]

- $k = |S| + |T|
- Each vertex has a capacity
 - \[\sum_{uv} f(uv) \leq c(v) \quad \forall v \in V \setminus (S \cup T) \] (vertex capacities)

Applications in image processing/computer vision/vertex-disjoint paths.
Can we do better than $O(n^2 / \log n)$ time?
Past results

- Max \(st \)-flow in planar digraphs with vertex capacities can be solved in \(O(n \log n) \) time [Kaplan & Nussbaum '11]
- Reduction that turns multiple sources/sinks into single source/sink does not preserve planarity
Past results

- Max flow in planar digraphs with only α vertex capacities can be solved in $O(\alpha^3 n \log^3 n)$ time [Borradaile, Klein, Mozes, Nussbaum, Wulff-Nilsen ’17]
- Reduction that eliminates vertex capacities does not preserve planarity [Ford & Fulkerson ’62]
Previously, no near-linear-time algorithms were known, even for unit capacities when $k = 3$

<table>
<thead>
<tr>
<th></th>
<th>Previous result</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit capacities</td>
<td>$\tilde{O}(n^{10/7})$ $[\text{M'{a}dry '13}]$</td>
<td>$O(n \log^3 n + kn)$</td>
</tr>
<tr>
<td>Integer capacities</td>
<td>$O(n^{3/2} \log n \log U)$ $[\text{Goldberg/Rao '98}]$</td>
<td>$O(k^5 n \text{ polylog}(nU))$</td>
</tr>
<tr>
<td>$\leq U$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real capacities</td>
<td>$O(n^2 / \log n)$ $[\text{Orlin '13}]$</td>
<td>$O(n \log n)$ if $k = 3$</td>
</tr>
</tbody>
</table>

Our strategy: Extend Kaplan/Nussbaum’s $O(n \log n)$-time algorithm for single source/sink
Assume for this talk that max degree $= 4$

A *saddle* is a vertex where incident arcs change direction ≥ 4 times

A vertex is *bad* if its capacity is being violated.

The *excess* of a bad vertex is the amount by which its capacity is being violated.

The *excess* of a flow is the maximum excess of a vertex.
Preliminaries

\overline{G}: replace each v with edge of capacity $c(v)$

G°: replace each v with undirected cycle of capacity $c(v)/2$
Algorithm for single source/sink

Theorem (Kaplan & Nussbaum ’11)

Can find max flow in directed planar graphs with vertex capacities and a single source/sink in \(O(n \log n)\) time.

Idea: Find a maximum flow \(f^*\) in \(G^*\), “project” this flow back into \(G\) to get a flow \(f\)

Lemma (Khuller & Naor ’94)

If single source/sink, then \(G\) and \(G^\) have the same maximum flow value*

Problem: \(f\) may violate vertex capacities at its saddles
Problem: f may violate vertex capacities at its saddles
Getting rid of saddles in f

Lemma (Guattery & Miller ’92)

Any planar DAG with k sources and sinks has at most $k - 2$ saddles
Getting rid of saddles in \(f \)

Vertex capacities are only violated at saddles, so:

Lemma

If \(f^\circ \) is a max flow in \(G^\circ \) such that its projection \(f \) to \(G \) is acyclic, then \(f \) has at most \(k - 2 \) saddles (and thus violates at most \(k - 2 \) vertex capacities).

We can find such an \(f^\circ \), essentially by cancelling flow-cycles:

Lemma (Kaplan & Nussbaum '11)

In \(O(n) \) time, we can convert any flow \(f^\circ \) in \(G^\circ \) to another flow in \(G^\circ \) of the same value as \(f^\circ \) whose projection to \(G \) is acyclic.
Kaplan and Nussbaum’s $O(n \log n)$-time algorithm for single source and sink:

- Find max flow f° in G°. ($O(n \log n)$ time)
- Convert f° to a max flow f_1° in G° whose projection f_1 to G is acyclic. ($O(n)$ time)
- Return f_1.
Problems:

- Value of max flow in G° might be larger than value of max flow in G
- We only know how to find a max flow f° in G° whose projection f in G violates at most $k - 2$ vertex capacities

On the other hand, if a vertex v is bad, then excess of v is at most $c(v)$
Find a maximum flow f° in G° whose restriction f to G violates at most $k - 2$ vertex capacities ($O(n \log^3 n)$ time)

2. From f, remove one unit of flow through each bad vertex, to get a flow f' satisfying vertex capacities ($O(n)$ time)

3. In residual graph of \overline{G} with respect to f', find max flow f'' using Ford-Fulkerson algorithm ($O(kn)$ time)

4. Return $f' + f''$

Total: $O(n \log^3 n + kn)$ time
Let λ^* be the value of max flow in G.

- Guess λ^* using binary search
 1. Suppose the guess is λ
 2. Find a flow f° in G° of value λ such that its projection f in G
 violates at most $k - 2$ vertex capacities
 3. While $\text{excess}(f) > 2k$
 - “Improve” f (i.e., cut $\text{excess}(f)$ by factor $k/(k - 1)$)
 4. Get rid of remaining excess using idea from unit-capacity case.
Integer capacity case

Let λ^* be the value of max flow in G.

- Guess λ^* using binary search
 1. Suppose the guess is λ
 2. In G°: find a flow f° of value λ s.t. f acyclic
 3. While $\text{excess}(f) > 2k$
 - “Improve” f (i.e., cut $\text{excess}(f)$ by factor $k/(k - 1)$)
 4. Get rid of remaining excess using idea from unit-capacity case

Running time analysis

- While-loop takes $O(k^4 n \log^3 n)$ time per iteration, $O(k \log U)$ iterations.
- Binary search for λ^* contributes $\log(nU)$ factor.
- Step 4 takes $O(k^2 n)$ time
- Total time $O(k^5 n \log^5 (nU))$.
Let x_1, \ldots, x_{k-2} be bad vertices.

First we want circulations $\phi_1, \ldots, \phi_{k-2}$ where ϕ_i eliminates excess flow through x_i without increasing flow through other bad vertices.

To compute ϕ_i, find a flow in a modified residual graph H_i.

H_i is a graph that can become planar after removing $O(k)$ vertices (i.e., an $O(k)$-apex graph), so computing ϕ_i takes $O(k^3 n \log^3 n)$ time. [Borradaile et al. ’17]
Construction of H_i

First construct G^\times from G as a “hybrid” of \overline{G} and G^o

- good vertex v becomes cycle
- bad vertex x becomes arc

H_i is the residual graph of G^\times with respect to f^\times, except that:

- f in G
- H_i with source x_i^{in}, sink x_i^{out}
Let $\gamma = \phi_1 + \cdots + \phi_{k-2}$

- f has excess on x_1, \ldots, x_{k-2} but no excess on other vertices.
- $f + \gamma$ has no excess on x_1, \ldots, x_{k-2} but has excess on other vertices.
- Take a weighted average: $\text{excess}(f + \gamma/k)$ is at most $\frac{k-1}{k} \text{excess}(f)$.
- Convert $(f + \gamma/k)^\circ$ to a flow of the same value whose projection to G is acyclic; projection is desired improved f.
Open problems

- Surface graphs or minor-free graphs
- Unit capacities k not fixed
- Real capacities with fixed $k > 3$

Thanks to Microsoft Research for SIAM Student Travel Award